Skip to main content

Zygomycetes

  • Chapter
  • First Online:
Fungi and Food Spoilage
  • 818 Accesses

Abstract

Zygomycetes (the phylum Zygomycota) are among the most ancient lineages in the true fungi (Hoffmann et al. 2013). They are characterised by the production of solitary spores, zygospores, as their sexual state. Zygomycetes of significance here belong in the subphylum Mucoromycotina, the order Mucorales and most in the family Mucoraceae. These fungi are characterised by hyphae with few if any cross walls (septa): the hyphae are essentially unobstructed tubes. Absence of septa facilitates rapid translocation of nutrients and organelles such as mitochondria and nuclei between sites of growth, nutrient adsorption and spore formation. In consequence, Zygomycetes are also characterised by rapidity of growth. Many species are able to fill a Petri dish with loosely packed mycelium and to produce mature spores within two days of inoculation. This chapter outlines the taxonomy of common Mucorales found in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, A. et al. 2006. The molecular phylogeny of the genus Rhizopus based on rDNA sequences. Biosci. Biotechnol. Biochem. 70: 2387–2393.

    Article  CAS  PubMed  Google Scholar 

  • Abe A., Asano, Kozo. and Sone, T. 2010. A molecular phylogeny-based taxonomy of the genus Rhizopus. Biosci Biotechnol Biochem. 2010;74(7):1325-31. https://doi.org/10.1271/bbb.90718.

  • Adebajo, L.O. 1994. Isolation and assay for the toxicity of fungi from kola nuts. Chem., Mikrobiol., Technol., Lebensm. 16: 25–28.

    CAS  Google Scholar 

  • Adebajo, L.O. and Diyaolu, S.A. 2003. Mycology and spoilage of retail cashew nuts. Afr. J. Biotechnol. 2: 369–373.

    Article  Google Scholar 

  • Adebajo, L.O. and Popoola, O.J. 2003. Mycoflora and mycotoxins in kolanuts during storage. Afr. J. Biotechnol. 2: 365–368.

    Article  CAS  Google Scholar 

  • Amusa, N.A. and Baiyewu, R.A. 1999. Storage and market disease of yam tubers in Southwestern Nigeria. Ogun J. Agric. Res. (Nigeria) 11: 211–225.

    Google Scholar 

  • Alastruey-Izquierdo, A., Hoffmann, K., Sybren de Hoog, G., Rodriguez-Tudela, J.L., Voigt, K., Bibashi, E. and Walther, G. 2010. Species Recognition and Clinical Relevance of the Zygomycetous Genus Lichtheimia (syn. Absidia Pro Parte, Mycocladus). J. Clin. Microbiol. 48: 2154–2170.

    Google Scholar 

  • Askun, T. 2006. Investigation of fungal species diversity of maize kernels. J. Biol. Sci. 6: 275–281.

    Article  Google Scholar 

  • Bautista-Baños, S., Bosquez-Molina, E., and Barrera-Necha, L. L. (2014). Rhizopus stolonifer (Soft Rot). Postharvest Decay, Chap. 1, 1–44. https://doi.org/10.1016/B978-0-12-411552-1.00001-6

  • Beneke, E.S. et al. 1954. The incidence and proteolytic activity of fungi isolated from Michigan strawberry fruits. Appl. Microbiol. 2: 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, R.K. 1959. The merosporangiferous Mucorales. Aliso 4: 321–433.

    Article  Google Scholar 

  • Beuchat, L.R. 1987. Traditional fermented food products. In Food and Beverage Mycology, 2nd edn, ed. L.R. Beuchat. Westport, Connecticut: AVI Publishing Co. pp. 269–306.

    Google Scholar 

  • Borve, J. and Vangdal, E. 2007. Fungal pathogens causing fruit decay on plum (Persica domestica L.) in Norway. Acta Horticulturae 734: 367–369.

    Article  Google Scholar 

  • Brooks, F. and Hansford, C.G. 1923. Mould growth upon cold-stored meat. Trans. Br. Mycol. Soc. 8: 113–142.

    Article  Google Scholar 

  • Cantoni, C. et al. 2003. Some alterations of fresh soft cheeses. Ind. Aliment. 42: 15–19.

    Google Scholar 

  • Canel, R.S., Wagner J.R., Stenglein, S.A and Ludemann, V. 2013. Indigenous filamentous fungi on the surface of Argentinean dry fermented sausages produced in Colonia Caroya (Córdoba). Int. J. Food Microbiol. 164: 81–86.

    Article  PubMed  Google Scholar 

  • Cantoni, C. et al. 2007. [Moulds and ochratoxin A on dry salami surfaces]. Ind. Aliment. 46: 10–12, 19.

    Google Scholar 

  • Castellari, C., Quadrelli, A.M. and Laich, F. 2010 Surface mycobiota on Argentinean dry fermented sausages. Int J. Food Microbiol. 142: 149–155.

    Article  PubMed  Google Scholar 

  • Centraalbureau voor Schimmelcultures (2016) Fungal Collection database. https://wi.knaw.nl/page/Collection

  • Chupp, C. and Sherf, A.F. 1960. Vegetable Diseases and their Control. New York: Ronald Press.

    Google Scholar 

  • Copetti, M.V., Iamanaka, B.T., Frisvad, J.C., Pereira, J.L. and Taniwaki, M.H. 2011. Mycobiota of cocoa: from farm to chocolate. Food Microbiol. 28: 1499–1504.

    Article  PubMed  Google Scholar 

  • Crisan, E.V. 1973. Current concepts of thermophilism and the thermophilic fungi. Mycologia 65: 1171–1198.

    Article  CAS  PubMed  Google Scholar 

  • Dawar, S. et al. 2007. Seedborne fungi associated with chickpea in Pakistan. Pak. J. Botan. 39: 637–643.

    Google Scholar 

  • De Hoog, G.S. et al. 2000. Atlas of Clinical Fungi, 2nd edn. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Dennis, C. et al. 1979. The relative importance of fungi in the breakdown of commercial samples of sulphited strawberries. J. Sci. Food Agric. 30: 959–973.

    Article  Google Scholar 

  • Devoyod, J.J. 1988. [Microbial accidents in cheese making due to Mucor]. Microbiol., Aliments, Nutr. 6: 25–29.

    Google Scholar 

  • Dolatabadi, S., de Hoog, G.S., Meis, J.F. and Walther, G. 2014 Species boundaries and nomenclature of Rhizopus arrhizus (syn. R. oryzae) - Mycoses, 2014 - Mycoses, 2014, 57 (Suppl. 3), 108–127

    Google Scholar 

  • Domsch, K.H. et al. 1980. Compendium of Soil Fungi, 2 vols. London: Academic Press.

    Google Scholar 

  • Dragoni, I. et al. 1989. [Mycoflora seasonal variability in a confectionery production line.] Ind. Aliment. (Pinerolo, Italy) 28: 481–486, 491.

    Google Scholar 

  • Dragoni, I. et al. 1997. Mycological standards in Taleggio cheese. Microbiol., Aliment., Nutr. 15: 185–190.

    Google Scholar 

  • Ellis, J.J. 1985. Species and varieties in the Rhizopus arrhizus – Rhizopus oryzae group as indicated by their DNA complementarity. Mycologia 77: 243–247.

    Article  Google Scholar 

  • Elshafie, A.E. et al. 2002. Fungi and aflatoxins associated with spices in the Sultanate of Oman. Mycopathologia, 155: 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Embaby, E. and Hassan, M.K. 2015. Decay of guava fruit (Psidium guajava Linn.) quality caused by some mold fungi. J. Agric. Technol. 11: 713–730.

    Google Scholar 

  • Evans, H.C. 1971. Thermophilous fungi of coal spoil tips. II. Occurrence, distribution and temperature relationships. Trans. Br. Mycol. Soc. 57: 255–266.

    Article  Google Scholar 

  • Fapohunda, S.O. and Ogundero, V.W. 1990. Physiology of fungi associated with fast foods in Nigeria. Int. Biodeterior. 26: 23–32.

    Article  Google Scholar 

  • Feng, X. M. et al. 2007. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation. Int. J. Food Microbiol. 113: 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Flood, M.T. and Kondo, M. 2003. Safety evaluation of lipase produced from Rhizopus oryzae: summary of toxicological data. Reg. Toxicol. Pharmacol. 37: 293–304.

    Article  CAS  Google Scholar 

  • Foschino, R. et al. 1993. Microbial contaminants cause swelling and inward collapse of yoghurt packs. Lait 73: 395–400.

    Article  Google Scholar 

  • Gachomo, E.W. et al. 2004. Diversity of fungal species associated with peanuts in storage and the levels of aflatoxins in infected samples. Int. J. Agric. Biol. 6: 955–959.

    CAS  Google Scholar 

  • Gleason, F.H. 1971. Alcohol dehydrogenase in Mucorales. Mycologia 63: 906–910.

    Article  CAS  PubMed  Google Scholar 

  • Gnonlonfin, G.J.B. et al. 2008. Mycoflora and natural occurrence of aflatoxins and fumonisin B1 in cassava and yam chips from Benin, West Africa. Int. J. Food Microbiol. 122: 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Gray, W.D. 1970. The Use of Fungi as Food and in Food Processing. Cleveland, Ohio: CRC Press.

    Google Scholar 

  • Gros, J.B. et al. 2003. Selection of mould strains from the surface flora of French saucissons and study of their biocatalytic behaviour. Sci. Aliments 23: 150–153.

    Article  Google Scholar 

  • Handoyo, T. et al. 2006. Hypoallergenic buckwheat flour preparation by Rhizopus oligosporus and its application to soba noodle. Food Res. Int. 39: 598–605.

    Article  CAS  Google Scholar 

  • Harper, K.A. et al. 1972. Texture changes in canned apricots following infection of the fresh fruit with Rhizopus stolonifer. J. Sci. Food Agric. 23: 311–320.

    Article  Google Scholar 

  • Harris, J.E. and Dennis, C. 1980. Distribution of Mucor piriformis, Rhizopus sexualis and R. stolonifer in relation to their spoilage of strawberries. Trans. Br. Mycol. Soc. 75: 445–450.

    Article  Google Scholar 

  • Hayaloglu, A.A. and Kirbag, S. 2007. Microbial quality and presence of moulds in Kuflu cheese. Int. J. Food Microbiol. 115: 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Hermet, A., Méheust, D., Mounier, J., Barbier, G. and Jany, J.L. 2012. Molecular systematics in the genus Mucor with special regards to species encountered in cheese. Fungal Biol. 116: 692–705.

    Article  PubMed  Google Scholar 

  • Hesseltine, C.W. 1965. A millennium of fungi and fermentation. Mycologia 57:49–197.

    Article  Google Scholar 

  • Hesseltine, C.W. 1991. Zygomycetes in food fermentations. Mycologist 5: 162–169.

    Article  Google Scholar 

  • Hesseltine, C.W. and Anderson, P. 1956. The genus Thamnidium and a study of the formation of its zygospores. Am. J. Bot. 43: 696–703.

    Article  Google Scholar 

  • Hoffmann, K., Discher, S. and Voigt, K. 2007. Revision of the genus Absidia Mucorales, Zygomycetes based on physiological, phylogenetic and morphological characters: Thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol. Res. 111: 1169–1183.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, K., Walther, G. and Voigt, K. 2009. Mycocladus vs. Lichtheimia: a correction Lichtheimiaceae fam. nov., Mucorales, Mucoromycotina. Mycol. Res. 113: 277–278.

    Google Scholar 

  • Hoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., de Hoog, G.S., Benny, G.L., Kirk, P.M. and Voigt, K. 2013. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia - Molecular Phylogeny and Evolution of Fungi, 30: pp. 57-76

    Article  CAS  PubMed Central  Google Scholar 

  • Hong, SB., Kim, DH., Lee, M. et al. 2012. Zygomycota associated with traditional meju, a fermented soybean starting material for soy sauce and soybean paste. J Microbiol. 50: 386–393. https://doi.org/10.1007/s12275-012-1437-6

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A.D. 1990. Responses of fungi to modified atmospheres. In Fumigation and Controlled Atmosphere Storage of Grain, eds B.R. Champ, E. Highley and H.J. Banks. ACIAR Proceedings No 25. Canberra, Australia: Australian Centre for International Agricultural Research. pp 70–82.

    Google Scholar 

  • Hocking, A.D. and Miscamble, B.F. 1995. Water relations of some Zygomycetes isolated from food. Mycol. Res. 99: 1113–1118.

    Article  Google Scholar 

  • Hoogerwerf, S.W. et al. 2002. High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds. Lett. Appl. Microbiol. 35: 419–422.

    Article  CAS  PubMed  Google Scholar 

  • Ito, P.J. et al. 1979. Transmission of Mucor rot of guava fruits by three species of fruit flies. Trop. Agric. 56: 49–52.

    Google Scholar 

  • Iwata, T. 2006. Mucor rot of long Chinese yam (Dioscorea batatas) caused by Mucor piriformis. Ann. Rept Soc. Plant Prot. N. Japan 57: 33–37.

    Google Scholar 

  • Jennessen, J. et al. 2008. Morphological characteristics of the sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol. Res. 112: 547–563.

    Article  PubMed  Google Scholar 

  • Jermini, M. et al. 2006. Influence of fruit treatments on perishability during cold storage of sweet chestnuts. J. Sci. Food Agric. 86: 877–885.

    Article  CAS  Google Scholar 

  • Jidda, M.B. and Anaso, A.B., 2014. Mycoflora associated with Masakwa sorghum (sorghum bicolor (L) moench) in the North Eastern part of Nigeria. J. Stored Prod. Postharvest Res. 5: 20–25.

    Google Scholar 

  • Joffe, A.Z. 1962. Biological properties of some toxic fungi isolated from over-wintered cereals. Mycopathol. Mycol. Appl. 16: 201–221.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, G.I. et al. 1990. Control of stem end rot (Dothiorella dominicana) and other postharvest diseases of mangoes (cv. Kensington Pride) during short- and long-term storage. Trop. Agric. 67: 183–187.

    CAS  Google Scholar 

  • Karabulut, O.A. et al. 2004. Control of preharvest and postharvest fruit rot in strawberry by Metschnikowia fructicola. Biocontrol Sci. Technol. 14: 513–521.

    Article  Google Scholar 

  • Kassim, M.Y. 1987. Chemical control of post-harvest diseases of some vegetable fruits in Saudi Arabia. J. Coll. Sci., King Saud Univ. 18: 43–49.

    CAS  Google Scholar 

  • Kivanç, M. 1992. Fungal contamination of Kashar cheese in Turkey. Nahrung 36: 578–583.

    Article  PubMed  Google Scholar 

  • Ko, S.D. and Hesseltine, C.W. 1979. Tempe and related foods. In Economic Microbiology, Vol. 4, Microbial Biomass, ed. A.H. Rose. London: Academic Press. pp. 115–140.

    Google Scholar 

  • Koizumi, T. 2001. Mystery of fermented foods – there are friendly molds too! Jap. J. Med. Mycol. 42: 1–5.

    Article  CAS  Google Scholar 

  • Kouyeas, V. 1964. An approach to the study of moisture relations of soil fungi. Plant Soil 20: 351–363.

    Article  Google Scholar 

  • Kurtzman, C.P. and Droby, S. 2001. Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst. Appl. Microbiol. 24: 395–399.

    Google Scholar 

  • Kuthubutheen, A.J. 1979. Thermophilic fungi associated with freshly harvested rice seeds. Trans. Br. Mycol. Soc. 73: 357–359.

    Article  Google Scholar 

  • Kwasna, H. et al. 2006. Phylogenetic relationships among Zygomycetes from soil based on ITS1/2 rDNA sequences. Mycol. Res. 110: 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Laurenčík, M., Sulo, P., Sláviková, E., Piecková, E., Seman, M. and Ebringer, L. 2008. The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese — Bryndza. Int. J. Food Microbiol. 127 176–179

    Article  PubMed  CAS  Google Scholar 

  • Lennox, C.L. et al. 2004. Incidence of Postharvest decay of d’Anjou pear and control with a thiabendazole drench. Plant Dis. 88: 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Liou, G.-Y. et al. 2007. Polyphasic approach to the taxonomy of the Rhizopus stolonifer group. Mycol. Res. 111: 196–203.

    Article  PubMed  Google Scholar 

  • Liu, X.Y. et al. 2001. Relationships within Cunninghamella based on sequence analysis of ITS rDNA. Mycotaxon 80: 77–95.

    Google Scholar 

  • Lugauskas, A. et al. 2005. Micromycetes, producers of toxins, detected on stored vegetables. Annals Agric. Environ. Med. 12: 253–260.

    Google Scholar 

  • Lugauskas, A. et al. 2006. Toxic micromycetes in grain raw material during its processing. Annals Agric. Environ. Med. 13: 147–161.

    Google Scholar 

  • Lund, F. et al. 1995. Associated mycoflora of cheese. Food Microbiol. 12: 173–180.

    Article  Google Scholar 

  • Makun, H.A. et al. 2007a. Fungi and some mycotoxins contaminating rice (Oryza sativa) in Niger State, Nigeria. Afr. J. Biotechnol. 6: 99–108.

    Google Scholar 

  • Makun, H.A. et al. 2007b. Toxicological screening of fungi isolated from millet (Pennisetum spp.) during the rainy and dry harmattan seasons in Niger state, Nigeria. Afr. J. Biotechnol. 6: 34–40.

    Google Scholar 

  • Mandeel, Q.A. 2005. Fungal contamination of some imported spices. Mycopathologia 159: 291–298.

    Article  PubMed  Google Scholar 

  • Mari, M. et al. 2003. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 94: 761–766.

    Article  CAS  PubMed  Google Scholar 

  • Michailides, T.J. and Ogawa, J.M. 1989. Effects of high temperatures on the survival and pathogenicity of propagules of Mucor piriformis. Phytopathology 79: 547–554.

    Article  Google Scholar 

  • Michailides, T.J. and Spotts, R.A. 1990. Postharvest diseases of pome and stone fruits caused by Mucor piriformis in the Pacific Northwest and California. Plant Dis. 74: 537–543.

    Article  Google Scholar 

  • Nicoue, E.E. et al. 2004. Destruction of Rhizopus stolonifer and Botrytis cinerea by ozone/ions treatments. Phytoprotection 85: 81–87.

    Article  CAS  Google Scholar 

  • Northolt, M.D. et al. 1980. Fungal growth and the presence of sterigmatocystin in hard cheese. J. Assoc. Off. Anal. Chem. 63: 115–119.

    CAS  PubMed  Google Scholar 

  • Nout, M.J.R. and Rombouts, F.M. 1990. Recent developments in tempe research. J. Appl. Bacteriol. 69: 609–633.

    Article  Google Scholar 

  • O’Donnell, K. et al. 2001. Evolutionary relationships among mucoralean fungi (Zygomycota): evidence of family polyphyly on a large scale. Mycologia 93: 286–296.

    Article  Google Scholar 

  • O’Donnell, K.L. 1979. Zygomycetes in culture. Athens, Georgia: University of Georgia.

    Google Scholar 

  • Ogundero, V.W. 1981. Degradation of Nigerian palm products by thermophilic fungi. Trans. Br. Mycol. Soc. 77: 267–271.

    Article  CAS  Google Scholar 

  • Oyeniran, J.O. 1980. The role of fungi in the deterioration of tropical stored products. Occasional Paper Ser., Niger. Stored Prod. Res. Inst. 2: 1–25.

    Google Scholar 

  • Pan, J. et al. 2004. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J. Sci. Food Agric. 84: 1831–1838.

    Article  CAS  Google Scholar 

  • Panasenko, V.T. 1967. Ecology of microfungi. Bot. Rev. 33: 189–215.

    Article  Google Scholar 

  • Partida-Martinez, L.P. et al. 2007. Rhizonin, the first mycotoxin isolated from the Zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl. Environ. Microbiol. 73: 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Pierson, C.F. 1966. Effect of temperature on the growth of Rhizopus stolonifer on peaches and agar. Phytopathology 56: 276–278.

    Google Scholar 

  • Piskorska-Pliszczynska, J. and Borkowska-Opacka, B. 1984. Natural occurrence of ochratoxin A and two ochratoxin-producing fungal strains in cheesecake. Bull. Vet. Inst. Pulawy 27: 95–98.

    CAS  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. et al. 1993. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1994. The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int. J. Food Microbiol. 23: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1998. The mycoflora of food commodities from Indonesia. J. Food Mycol. 1: 41–60.

    Google Scholar 

  • Rabie, C.J. et al. 1985. Toxigenicity of Rhizopus species. Int. J. Food Microbiol. 1: 263–270.

    Article  Google Scholar 

  • Restuccia, C. et al. 2006. Biological control of peach fungal pathogens by commercial products and indigenous yeasts. J. Food Prot. 69: 2465–2470.

    Article  PubMed  Google Scholar 

  • Roberts, R.G. and Reymond, S.T. 1994. Chlorine dioxide for reduction of postharvest pathogen inoculum during handling of tree fruits. Appl. Environ. Microbiol. 60: 2864–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombouts, F.M. and Nout, M.R.J. 1995. Microbial fermentation in the production of plant foods. J. Appl. Bacteriol. Symp. Suppl. 79: 108S–117S.

    Google Scholar 

  • Roussos, S. et al. 2006. Characterization of filamentous fungi isolated from Moroccan olive and olive cake: toxinogenic potential of Aspergillus strains. Mol. Nutr. Food Res. 50: 500–506.

    Article  CAS  PubMed  Google Scholar 

  • Sabaa-Srur, A.U.O. et al. 1993. Recommended chlorine levels for treatment of float-tank water in tomato packinghouses. Acta Hortic. 1993: 337–338.

    Article  Google Scholar 

  • Saito, S., Michailides, T.J. and Xiao, C.L. 2016. Mucor Rot—An Emerging Postharvest Disease of Mandarin Fruit Caused by Mucor piriformis and other Mucor spp. in California. Plant Dis. 100: 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, P.R. et al. 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82: 683–690.

    Article  CAS  Google Scholar 

  • Saudi, A.M. and Mansour, N.K. 1990. Fungal contamination of ready-to-eat-meals in airline catering. Fleischwirtschaft 70: 563–564.

    Google Scholar 

  • Schipper, M.A.A. 1973. A study on variability in Mucor hiemalis and related species. Stud. Mycol., Baarn 4: 1–40.

    Google Scholar 

  • Schipper, M.A.A. 1975. On Mucor mucedo, Mucor flavus and related species. Stud. Mycol., Baarn 10: 1–33.

    Google Scholar 

  • Schipper, M.A.A. 1976. On Mucor circinelloides, Mucor racemosus and related species. Stud. Mycol., Baarn 12: 1–40.

    Google Scholar 

  • Schipper, M.A.A. 1978a. On certain species of Mucor with a key to all accepted species. Stud. Mycol., Baarn 17: 1–52.

    Google Scholar 

  • Schipper, M.A.A. 1978b. On the genera Rhizomucor and Parasitella. Stud. Mycol., Baarn 17: 53–71.

    Google Scholar 

  • Schipper, M.A.A. 1984. A revision of the genus Rhizopus. 1. The Rh. stolonifer-group and Rh. oryzae. Stud. Mycol., Baarn 25: 1–19.

    Google Scholar 

  • Schipper, M.A.A. and Stalpers, J.A. 1984. A revision of the genus Rhizopus. 2. The Rh. microsporus-group. Stud. Mycol., Baarn 25: 20–34.

    Google Scholar 

  • Senser, F. 1979. Untersuchungen zum Aflatoxingehalt in Haselnüssen. Gordian 79: 117–123.

    CAS  Google Scholar 

  • Singh, P.K. and Shukla, A.N. 2005. Studies on mycoflora and natural occurrence of mycotoxins in Prunus armeniaca Linn. Indian J. Forestry 28: 397–399.

    Google Scholar 

  • Singh, R.S. and Prashar, M. 1988. Two new post-harvest diseases of peach in India. J. Res. (Punjab Agric. Univ.) 25: 417–418.

    Google Scholar 

  • Snow, D. 1949. Germination of mould spores at controlled humidities. Ann. Appl. Biol. 36: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon, A.L. 1990. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 1. General Introduction and Fruits. London: Wolfe Scientific.

    Google Scholar 

  • Snowdon, A.L. 1991. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 2. Vegetables. London: Wolfe Scientific.

    Google Scholar 

  • Spadaro, D. et al. 2013. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol. Technol. 75: 1–8.

    Article  CAS  Google Scholar 

  • Spotts, R.A. and Cervantes, L.A. 1989. Evaluation of disinfestant-flotation salt-surfactant combinations on decay fungi of pear in a model dump tank. Phytopathology 79: 121–126.

    Article  CAS  Google Scholar 

  • Spotts, R.A. et al. 2006. Effect of high-pressure hot water washing treatment on fruit quality, insects, and disease in apples and pears. Part II. Effect on postharvest decay of d’Anjou pear fruit. Postharvest Biol. Technol. 40: 216–220.

    Article  Google Scholar 

  • Stotzky, G. and Goos, R.D. 1965. Effect of high CO2 and low O2 tensions on the soil microbiota. Can. J. Microbiol. 11: 853–868.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki, M.H. et al. 2001a. Growth of fungi and mycotoxin production on cheese under modified atmospheres. Int. J. Food Microbiol. 68: 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki, M.H. et al. 2009. Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. Int. J. Food Microbiol. 132: 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Tariq, M. et al. 2005. Seedborne mycoflora of soybean. Int. J. Biol. Biotech. 2: 711–713.

    Google Scholar 

  • Tresner, H.D. and Hayes, J.A. 1971. Sodium chloride tolerance of terrestrial fungi. Appl. Microbiol. 22: 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vágvölgyi, C. et al. 2004. Genetic variability in the species Rhizopus stolonifer, assessed by random amplified polymorphic DNA analysis. Antonie van Leeuwenhoek 86: 181–188.

    Article  PubMed  Google Scholar 

  • Voigt, K. et al. 1999. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. J. Clin. Microbiol. 37: 3957–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waje, C.K.et al. 2005. Mycological stability of minimally-processed young coconut (Cocos nucifera L.) as influenced by different chemical and physical treatments. Philipp. Agric. Sci. 88: 84–94.

    Google Scholar 

  • Walther, G., Pawłowska, J., Alastruey-Izquierdo, A., Wrzosek, M., Rodriguez-Tudela, J.L., Dolatabadi, S., Chakrabarti, A. and de Hoog, G.S. 2013. DNA barcoding in Mucorales: an inventory Persoonia - Molecular Phylogeny and Evolution of Fungi. 30: 11-47

    Google Scholar 

  • White, M.M. et al. 2006. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98: 872–884.

    Article  PubMed  Google Scholar 

  • Wilson, T. et al. 1984. Toxicity of rhizonin A, isolated from Rhizopus microsporus, in laboratory animals. Food Chem. Toxicol. 22: 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Youssef, M.S.et al. 2000. Mycobiota and mycotoxin contamination of dried raisins in Egypt. Afr. J. Mycol. Biotechnol. 8: 69–86.

    CAS  Google Scholar 

  • Yu, J., Walther, G., Van Diepeningen, A. D., Gerrits Van Den Ende, A. H. G., Li, R.-Y., Moussa, T. A. A., Almaghrabi, O. A. and De Hoog, G. S. 2015. DNA barcoding of clinically relevant Cunninghamella species, Med. Mycol. 53: 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.Y.et al. 2007. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18: 287–291.

    Article  CAS  Google Scholar 

  • Zheng, R.Y. and Chen, G.Q. 2001. A monograph of Cunninghamella. Mycotaxon 80: 1–75.

    Google Scholar 

  • Zheng, R.-Z. et al. 2007. A monograph of Rhizopus. Sydowia 59: 273–372.

    Google Scholar 

  • Zheng, R.Y., Liu, X.Y. and Li, R.Y. 2009. More Rhizomucor causing human mucormycosis from China: R. chlamydosporus sp. nov. Sydowia 61: 135–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Zygomycetes. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_6

Download citation

Publish with us

Policies and ethics