Skip to main content

Pharmacological Agents for COVID-19 Patients

  • Chapter
  • First Online:
Critical Care of COVID-19 in the Emergency Department

Abstract

The Emergency Department (ED), in the USA, is usually the first entry into the healthcare system. This chapter will help providers understand the therapeutic agents available for the management of COVID-19 infections. There is an abundance of literature being published and in a very quick manner, and we want to lay out the most evidence-based pharmacological agents available. Management of COVID-19 will depend on severity of the infection at presentation. Current evidence will support corticosteroids, thromboprophylaxis, and remdesivir. Limited evidence exists around the monoclonal antibodies, at this time. Some treatment options are to be initiated earlier and in higher-risk patient populations to reduce progression to more severe disease and hospitalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAP:

Acetaminophen

ECMO:

Extracorporeal membrane oxygenation

ED:

Emergency Department

EUA:

Emergency use authorization

FDA:

Federal Drug Administration

mAbs:

Monoclonal antibodies

MDI:

Metered dose inhaler

NIH:

National Institutes of Health

PPE:

Personal protective equipment

References

  1. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824–36. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32282022. (Review of therapeutic agents).

  2. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Updated 2020 Oct 9. From NIH website https://www.covid19treatmentguidelines.nih.gov/). Accessed 2020 Nov 20. (Supportive care and remdesivir, duration).

  3. Jeong HE, Lee H, Shin HJ et al. Association between NSAIDs use and adverse clinical outcomes among adults hospitalized with COVID-19 in South Korea: a nationwide study. Clin Infect Dis 2020. PMID: 32717066. https://doi.org/10.1093/cid/ciaa1056 (NSAIDs).

  4. Rinott E, Kozer E, Shapira Y, et al. Ibuprofen use and clinical outcomes in COVID-19 patients. Clin Infect Dis 2020. PMID: 32535147. https://doi.org/10.1016/j.cmi.2020.06.003 (NSAIDs).

  5. Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med. 2020;167:105987. https://doi.org/10.1016/j.rmed.2020.105987. (Safety of new drugs).

  6. Gilead Sciences. Veklury® (remdesivir) for injection and injection prescribing information. Foster City, CA; 2020 Oct. (Remdesivir).

    Google Scholar 

  7. Beigel JH, Tomashek KM, Dodd LE et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 2020; 383(19):1813. Epub 2020 Oct 8. PMID: 32445440. https://doi.org/10.1056/NEJMoa2007764 (Remdesivir).

  8. Adamsick ML, Gandhi RG, Bidell MR et al. Remdesivir in patients with acute or chronic kidney disease and COVID-19. J Am Soc Nephrol 2020; 31(7):1384. Epub 2020 Jun 8. PMID: 32513665. https://doi.org/10.1681/ASN.2020050589 (remdesivir and kidney).

  9. Spinner CD, Gottlieb RL, Criner GJ et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 2020; 324:1048–1057. PMID: 32821939. https://doi.org/10.1001/jama.2020.16349. (remdesivir duration).

  10. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with severe covid-19. N Engl J Med. 2020. PMID: 32459919. https://doi.org/10.1056/NEJMoa2015301 (remdesivir duration).

  11. Pan H, Peto R, Karim QA et al. Repurposed antiviral drugs for COVID-19 – interim WHO SOLIDARITY trial results. medRxiv. Posted Oct 15, 2020. Preprint (not peer reviewed). (https://www.medrxiv.org/content/10.1101/2020.10.15.20209817v1). (WHO).

  12. World Health Organization. Therapeutics and COVID-19: living guideline. https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline. Accessed 20 Nov 2020. PMID: 32887691 (WHO).

  13. Fact sheet for healthcare providers: Emergency use authorization (EUA) of baricitinib. https://www.fda.gov/media/143823/download. Accessed 23 Nov 2020).

  14. Study to evaluate the safety and efficacy of remdesivir (GS-5734) treatment of coronavirus disease 2019 (COVID-19) in an outpatient setting. NCT04501952. https://clinicaltrials.gov/ct2/show/NCT04501952. (outpatient).

  15. Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA 2020; 324:131–132. PMID: 32539093. https://doi.org/10.1001/jama.2020.10245. (mAbs).

  16. Zost SJ, Gilchuk P, Case JB et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020; 584:443–449. PMID: 32668443. https://doi.org/10.1038/s41586-020-2548-6 (mAbs).

  17. Chen et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with COVID-19. N Engl J Med. 2020 Oct 28 [epub ahead of print]. PMID: 33113295. https://doi.org/10.1056/NEJMoa2029849.

  18. A Study of LY3819253 (LY-CoV555) and LY3832479 (LY-CoV016) in Participants Hospitalized with Mild to Moderate COVID-19 Illness (BLAZE-1). NCT04427501. Update posted 2020 Sep 18. https://www.clinicaltrials.gov/ct2/show/study/NCT04427501.

  19. A Study of LY3819253 (LY-CoV555) in Participants Hospitalized for COVID-19. NCT04411628. Update posted 2020 Oct 30. https://www.clinicaltrials.gov/ct2/show/study/NCT04411628.

  20. Desai A. What is herd immunity. JAMA. 2020;324(20):2118.

    Article  Google Scholar 

  21. Rubin, Rita Difficult to determine herd immunity threshold for COVID-19 JAMA. 2020;3248;732.

    Google Scholar 

  22. Ada GL. The ideal vaccine. World J Microbiol Biotech. 1991;7(2):105–9.

    Article  CAS  Google Scholar 

  23. Hassan et al., 2020, Cell 183, 169–184 October 1, 2020 a 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.08.026.

  24. Graham BS, Corbett KS. Prototype pathogen approach for pandemic preparedness: world on fire. J Clin Invest. 2020. https://doi.org/10.1172/JCI139601.

  25. Nature. 2020;579(7798):265–269. Published online 2020 Feb 3.

    Google Scholar 

  26. Hassett KJ, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11. https://doi.org/10.1016/j.omtn.2019.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nanotechnology for COVID-19: Therapeutics and Vaccine Research.

    Google Scholar 

  28. Graham B, Rapid S. COVID-19 vaccine development. Science. 2020;368:945–6. https://doi.org/10.1126/science.abb8923.

    Article  CAS  PubMed  Google Scholar 

  29. Walls AC, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531:114–7. https://doi.org/10.1038/nature16988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Graham BS, Sullivan NJ. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat Immunol. 2018;19:20–8. https://doi.org/10.1038/s41590-017-0007-9.

    Article  CAS  PubMed  Google Scholar 

  31. SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness.

    Google Scholar 

  32. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates Edward Walsh NEJM 2020.

    Google Scholar 

  33. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–27. https://doi.org/10.1038/s41586-020-2798-.

    Article  CAS  PubMed  Google Scholar 

  34. Kai Kupferschmidt Health coronavirus Science do110:1126.

    Google Scholar 

  35. Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Sig Transduct Target Ther. 2020;5:237. https://doi.org/10.1038/s41392-020-00352-y.

    Article  CAS  Google Scholar 

  36. Amanai F, Krammer Floian SARS-CoV-2 Vaccines: Status.

    Google Scholar 

  37. Gregory Poland Mayo Clinic Proceedings SARS Vaccine Development: Current Status.

    Google Scholar 

  38. Abbasi J. COVID-19 and mRNA vaccines—first large test for a new approach. JAMA. 2020;324(12):1125–7. https://doi.org/10.1001/jama.2020.16866.

    Article  CAS  PubMed  Google Scholar 

  39. COVID-19 Vaccine Candidate. MGH Nov 2020. SARS-CoV-2 Vaccine.

    Google Scholar 

  40. Liu Y, Wang K, Massoud TF, Paulmurugan R. Development: an overview and perspectives. ACS Pharmaco Trans Sci. 2020;3(5):844–58. https://doi.org/10.1021/acsptsci.0c00109.

    Article  CAS  Google Scholar 

  41. Johnson and Johnson study protocol for vaccine.

    Google Scholar 

  42. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine NEJM 12/2020.

    Google Scholar 

  43. AstraZeneca/oxford covid-19 vaccine efficacy 12/2020.

    Google Scholar 

  44. CDC Government Mutant Variant of SAR-CoV-2 in UK and South Africa.

    Google Scholar 

  45. Mudgal R, et al. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Human Vacc Immunother. 2020. https://doi.org/10.1080/21645515.2020.1805992.

  46. Sara Reardon Scientific American Jan 29, 2021.

    Google Scholar 

  47. CDC.GOV Understanding mRNA COVID-19 Vaccines.

    Google Scholar 

  48. Campell R. Emergency department diagnosis and treatment of anaphylaxis: a practice parameter. Ann Allergy Asthma Immunol. 2014;1139:599–608.

    Article  Google Scholar 

  49. Lee W. Yip: antibody-dependent enhancement and SARS-CoV-2 vaccines and therapeutics. Nat Microbiol. 2020;5:1185–91.

    Article  Google Scholar 

  50. Tetro J. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infection. 2020;22(2):72–3.

    Article  CAS  Google Scholar 

  51. Zaichuk TA, Nechipurenko YD, Adzhubey AA, et al. The challenges of vaccine development against Betacoronaviruses: antibody dependent enhancement and Sendai virus as a possible vaccine vector. Mol Biol. 2020.

    Google Scholar 

  52. Al-Betar MA, Alyasseri ZAA, Awadallah MA, et al. Coronavirus herd immunity optimizer (CHIO). Neural Comput & Applic. 2020.

    Google Scholar 

  53. Faria NR, Claro IM. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. https://doi.org/10.1007/s00521-020-05296-6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beranton Whisenant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, D., Searcy, R., Whisenant, B. (2021). Pharmacological Agents for COVID-19 Patients. In: Shiber, J.R. (eds) Critical Care of COVID-19 in the Emergency Department. Springer, Cham. https://doi.org/10.1007/978-3-030-85636-6_15

Download citation

Publish with us

Policies and ethics