Skip to main content

Compiling Elementary Mathematical Functions into Finite Chemical Reaction Networks via a Polynomialization Algorithm for ODEs

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12881))

Included in the following conference series:

Abstract

The Turing completeness result for continuous chemical reaction networks (CRN) shows that any computable function over the real numbers can be computed by a CRN over a finite set of formal molecular species using at most bimolecular reactions with mass action law kinetics. The proof uses a previous result of Turing completeness for functions defined by polynomial ordinary differential equations (PODE), the dual-rail encoding of real variables by the difference of concentration between two molecular species, and a back-end quadratization transformation to restrict to elementary reactions with at most two reactants. In this paper, we present a polynomialization algorithm of quadratic time complexity to transform a system of elementary differential equations in PODE. This algorithm is used as a front-end transformation to compile any elementary mathematical function, either of time or of some input species, into a finite CRN. We illustrate the performance of our compiler on a benchmark of elementary functions relevant to CRN design problems in synthetic biology specified by mathematical functions. In particular, the abstract CRN obtained by compilation of the Hill function of order 5 is compared to the natural CRN structure of MAPK signalling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity of the definition given here, we omit the error control mechanism that requires one extra CRN species z verifying:

    \(\forall t>1\ |y(t)-f(x(0))|\le z(t),\ \forall t'>t\ z(t')<z(t)\) and \(\lim _{t\rightarrow \infty }z(t)=0\).

  2. 2.

    http://lifeware.inria.fr/biocham/. All experiments described in this paper are available at https://lifeware.inria.fr/wiki/Main/Software#CMSB21.

  3. 3.

    https://pysathq.github.io/docs/html/api/examples/rc2.html.

References

  1. Baudier, A., Fages, F., Soliman, S.: Graphical requirements for multistationarity in reaction networks and their verification in biomodels. J. Theor. Biol. 459, 79–89 (2018)

    Google Scholar 

  2. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential equations compute all real computable functions on computable compact intervals. J. Complexity 23(3), 317–335 (2007)

    Google Scholar 

  3. Bychkov, A., Pogudin, G.: Optimal monomial quadratization for ode systems. In: Proceedings of the IWOCA 2021–32nd International Workshop on Combinatorial Algorithms, July 2021

    Google Scholar 

  4. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(84) (2014). https://doi.org/10.1186/1752-0509-8-84

  5. Carothers, D.C., Edgar Parker, G., Sochacki, J.S., Warne, P.G.: Some properties of solutions to polynomial systems of differential equations. Electron. J. Differ. Equ. 2005(40), 1–17 (2005)

    Google Scholar 

  6. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Natural Comput. 7433, 25–42 (2012)

    Google Scholar 

  7. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_27

  8. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Molecular Syst. Biol. 14(4), e7845 (2018)

    Google Scholar 

  9. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)

    Article  CAS  Google Scholar 

  10. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation in living cells. Nature 497(7451), 619–623, 05 (2013)

    Google Scholar 

  11. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

    Chapter  Google Scholar 

  12. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential equations. Theoretical Comput. Sci. 599, 64–78 (2015)

    Google Scholar 

  13. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theoretical Comput. Sci. 403(1), 52–70 (2008)

    Article  Google Scholar 

  14. Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, chapter 1, pp. 1–78. Prentice-Hall (1977)

    Google Scholar 

  15. Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating models in systems biology. Bioinformatics 26(18), i575–i581 (2010). special issue ECCB’10

    Article  CAS  Google Scholar 

  16. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complexity 19(5), 644–664 (2003)

    Article  Google Scholar 

  17. Chenjie, G.: QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(9), 1307–1320 (2011)

    Article  Google Scholar 

  18. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.) Colloquia Mathematica Societatis János Bolyai, volume 30 of Qualitative Theory of Differential Equations, pp. 363–379 (1979)

    Google Scholar 

  19. Hemery, M., Fages, F., Soliman, S.: On the complexity of quadratization for polynomial differential equations. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 120–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_7

    Chapter  Google Scholar 

  20. Huang, C.-Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93(19), 10078–10083 (1996)

    Google Scholar 

  21. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)

    Article  CAS  Google Scholar 

  22. Pouly, A.: Continuous models of computation: from computability to complexity. PhD thesis, Ecole Polytechnique, July 2015

    Google Scholar 

  23. Rizik, L., Ram, Y., Danial, R.: Noise tolerance analysis for reliable analog and digital computation in living cells. J. Bioeng. Biomed. Sci. 6, 186 (2016)

    Google Scholar 

  24. Sankaranarayanan, S.: Change-of-bases abstractions for non-linear systems. arXiv preprint arXiv:1204.4347 (2012)

  25. Sauro, H.M., Kim, K.: Synthetic biology: it’s an analog world. Nature 497(7451), 572–573 (2013)

    Google Scholar 

  26. Shannon, C.E.: Mathematical theory of the differential analyser. J. Math. Phys. 20, 337–354 (1941)

    Google Scholar 

Download references

Acknowledgment

We acknowledge fruitful discussions with Olivier Bournez, François Lemaire, Gleb Pogudin and Amaury Pouly. This work was supported by ANR-DFG SYMBIONT “Symbolic Methods for Biological Networks” project grant ANR-17-CE40-0036, and ANR DIFFERENCE “Complexity theory with discrete ODEs” project grant ANR-20-CE48-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fages .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemery, M., Fages, F., Soliman, S. (2021). Compiling Elementary Mathematical Functions into Finite Chemical Reaction Networks via a Polynomialization Algorithm for ODEs. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85633-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85632-8

  • Online ISBN: 978-3-030-85633-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics