Skip to main content

Nonlinear Pattern Matching in Rule-Based Modeling Languages

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2021)

Abstract

Rule-based modeling is an established paradigm for specifying simulation models of biochemical reaction networks. The expressiveness of rule-based modeling languages depends heavily on the expressiveness of the patterns on the left side of rules. Nonlinear patterns allow variables to occur multiple times. Combined with variables used in expressions, they provide great expressive power, in particular to express dynamics in discrete space. This has been exploited in some of the rule-based languages that were proposed in the last years. We focus on precisely defining the operational semantics of matching nonlinear patterns. We first adopt the usual approach to match nonlinear patterns by translating them to a linear pattern. We then introduce an alternative semantics that propagates values from one occurrence of a variable to other ones, and show that this novel approach permits a more efficient pattern matching algorithm. We confirm this theoretical result by benchmarking proof-of-concept implementations of both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code repository at https://git.informatik.uni-rostock.de/mosi/pattern-matching contains instructions on how to reproduce this plot.

  2. 2.

    See, for example, this discussion on the haskell-cafe mailing list.

References

  1. Baader, F., Nipkow, T., Franz, B.: Term Rewriting and All That. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  2. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative-commutative discrimination nets. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 61–74. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56610-4_56

    Chapter  Google Scholar 

  3. Bernardy, J.-P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear haskell: practical linearity in a higher-order polymorphic language. In: Proceedings of the ACM on Programming Languages, vol. 2, no. POPL, pp. 1–29 (2018)

    Google Scholar 

  4. Bittig, A.T., Uhrmacher, A.M.: ML-space: hybrid spatial gillespie and particle simulation of multi-level rule-based models in cell biology. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(6), 1339–1349 (2017)

    Article  CAS  Google Scholar 

  5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  CAS  Google Scholar 

  6. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)

    Article  Google Scholar 

  7. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochastic process calculi. ACM Comput. Surv. 46(1), 1–35 (2013)

    Article  Google Scholar 

  8. Egi, S.: Egison: non-linear pattern-matching against non-free data types (2015)

    Google Scholar 

  9. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with bionetgen. In: Maly, I.V. (ed.) Methods in Molecular Biology, pp. 113–167. Humana Press (2009)

    Google Scholar 

  10. Gilbert, D., Heiner, M., Takahashi, K., Uhrmacher, A.M.: Multiscale spatial computational systems biology (dagstuhl seminar 14481) (2015)

    Google Scholar 

  11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  CAS  Google Scholar 

  12. Helms, T., Warnke, T., Maus, C., Uhrmacher, A.M.: Semantics and efficient simulation algorithms of an expressive multi-level modeling language. ACM Trans. Model. Comput. Simul. 27(2), 8:1–8:25 (2017)

    Google Scholar 

  13. Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for specifying markovian population models. Int. J. Found. Comput. Sci. 22(4), 823–841 (2011)

    Article  Google Scholar 

  14. Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a language of parameterised agents. Theor. Comput. Sci. 765, 97–119 (2019)

    Article  Google Scholar 

  15. John, M., Lhoussaine, C., Niehren, J., Versari, C.: Biochemical reaction rules with constraints. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 338–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5_18

    Chapter  Google Scholar 

  16. Krebber, M., Barthels, H., Bientinesi, P.: Efficient pattern matching in python. ACM Press (2017)

    Google Scholar 

  17. Köster, T., Warnke, T., Uhrmacher, A.M.: Partial evaluation via code generation for static stochastic reaction network models. In: Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Miami FL, Spain, pp. 159–170. ACM (2020)

    Google Scholar 

  18. Lloyd, J.W.: Foundations of Logic Programming, (2nd Extended. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8

    Book  Google Scholar 

  19. Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modeling of cell biological systems. BMC Syst. Biol. 5(1), 166 (2011)

    Article  Google Scholar 

  20. Oury, N., Plotkin, G.D.: Coloured stochastic multilevel multiset rewriting. ACM Press (2011)

    Google Scholar 

  21. Oury, N., Plotkin, G.D.: Multi-level modelling via stochastic multi-level multiset rewriting. Math. Struct. Comput. Sci. 23(2), 471–503 (2013)

    Article  Google Scholar 

  22. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

    Google Scholar 

  23. Suderman, R., Mitra, E.D., Lin, Y.T., Erickson, K.E., Feng, S., Hlavacek, W.S.: Generalizing gillespie’s direct method to enable network-free simulations. Bull. Math. Biol. 81(8), 2822–2848 (2018)

    Article  Google Scholar 

  24. Warnke, T., Helms, T., Uhrmacher, A.M.: Syntax and semantics of a multi-level modeling language. In: Proceedings of the 2015 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 133–144. ACM, New York (2015)

    Google Scholar 

  25. Weiss, A., Gierczak, O., Patterson, D., Matsakis, N.D., Ahmed, A.: The essence of rust. Oxide (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Warnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Warnke, T., Uhrmacher, A.M. (2021). Nonlinear Pattern Matching in Rule-Based Modeling Languages. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85633-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85632-8

  • Online ISBN: 978-3-030-85633-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics