Abstract
There has been a considerable amount of research aimed at automating the documentation of accessibility in the built environment. Yet so far, there has been no fully automatic system that has been shown to reliably document surface quality barriers in the built environment in real-time. This is a mixed problem of HCI and applied machine learning, requiring the careful use of applied machine learning to address the real-world concern of practical documentation. To address this challenge, we offer a framework for designing applied machine learning approaches aimed at documenting the (in)accessibility of the built environment. This framework is designed to take into account the real-world picture, recognizing that the design of any accessibility documentation system has to take into account a range of factors that are not usually considered in machine learning research. We then apply this framework in a case study, illustrating an approach which can obtain a f-ratio of 0.952 in the best-case scenario.
Keywords
- Accessibility
- Built-Environment
- Documentation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Accessable. https://www.accessable.co.uk/. Accessed 31 Jan 2020
Convention on the rights of persons with disabilities (CRPD)—united nations enable. https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html. Accessed 27 Jan 2021
Fixmystreet. https://www.fixmystreet.com/. Accessed 18 Sept 2016
Machine learning und die transparenzanforderungen der ds-gvo, p. 44
Openrouteservice. https://www.openrouteservice.org
Photoroute. http://www.photoroute.com/. Accessed 14 Sept 2016
Routino. https://www.routino.org
Venues—axs map. https://www.axsmap.com/. Accessed 31 Jan 2020
World report on disability 2011 (2011)
Ahmetovic, D., Manduchi, R., Coughlan, J.M., Mascetti, S.: Zebra crossing spotter: automatic population of spatial databases for increased safety of blind travelers, pp. 251–258. ACM (2015)
Ahmetovic, D., Manduchi, R., Coughlan, J.M., Mascetti, S.: Mind your crossings: mining GIS imagery for crosswalk localization. ACM Trans. Access. Comput. (TACCESS) 9(4), 11 (2017)
Atkin, R.: Sight line: designing better streets for people with low vision (2010)
Bowtell, J.: Assessing the value and market attractiveness of the accessible tourism industry in Europe: a focus on major travel and leisure companies. J. Tour. Futures 1(3), 203–222 (2015)
Carrington, P., Chang, K., Mentis, H., Hurst, A.: “But, i don’t take steps”: examining the inaccessibility of fitness trackers for wheelchair athletes. ASSETS 2015, pp. 193–201. ACM, New York (2015). https://doi.org/10.1145/2700648.2809845
Chen, W.Y., et al.: Wheelchair-related accidents: relationship with wheelchair-using behavior in active community wheelchair users. Arch. Phys. Med. Rehabil. 92(6), 892–898 (2011)
Clarke, P., Ailshire, J.A., Bader, M., Morenoff, J.D., House, J.S.: Mobility, disability and the urban built environment. Am. J. Epidemiol. 168(5), 506–513 (2008)
Daveler, B., Salatin, B., Grindle, G.G., Candiotti, J., Wang, H., Cooper, R.A.: Participatory design and validation of mobility enhancement robotic wheelchair. J. Rehabil. Res. Dev. 52(6), 739–750 (2015)
Drummond, C., Japkowicz, N.: Warning: Statistical benchmarking is addictive. kicking the habit in machine learning. J. Exp. Theoret. Artif. Intell. 22, 67–80 (2010). https://doi.org/10.1080/09528130903010295
Fast-Company: How apple made the watch work for wheelchair users (2016). https://www.fastcompany.com/3061283/how-apple-made-the-watch-work-for-wheelchair-users
Fotios, S., Uttley, J.: Illuminance required to detect a pavement obstacle of critical size. Light. Res. Technol. 50(3), 390–404 (2018)
Froehlich, J.E., et al.: Grand challenges in accessible maps. Interactions 26, 78–81 (2019)
Garcia-Mendez, Y., Pearlman, J.L., Boninger, M.L., Cooper, R.A.: Health risks of vibration exposure to wheelchair users in the community. J. Spinal Cord Med. 36(4), 365–375 (2013)
Gharebaghi, A., Mostafavi, M.A., Chavoshi, S., Edwards, G., Fougeyrollas, P.: The role of social factors in the accessibility of urban areas for people with motor disabilities. ISPRS Int. J. Geo-Inf. 7(4), 131 (2018)
Ghilardi, M.C., Macedo, R.C., Manssour, I.H.: A new approach for automatic detection of tactile paving surfaces in sidewalks. Procedia Comput. Sci. 80, 662–672 (2016)
Guo, A., Kamar, E., Vaughan, J.W., Wallach, H., Morris, M.R.: Toward fairness in AI for people with disabilities: a research roadmap. arXiv:1907.02227 [cs], August 2019
Gupta, M., et al.: Towards more universal wayfinding technologies: navigation preferences across disabilities. CHI 2020: CHI Conference on Human Factors in Computing Systems, pp. 1–13. ACM, Honolulu, April 2020. https://doi.org/10.1145/3313831.3376581. Accessed 27 Jan 2021
Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80. Event: IEEE Pervasive Computing
Hammerla, N.Y., Kirkham, R., Andras, P., Ploetz, T.: On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution, pp. 65–68. ACM (2013)
Hammerla, N.Y., Plötz, T.: Let’s (not) stick together: pairwise similarity biases cross-validation in activity recognition, pp. 1041–1051. ACM (2015)
Hara, K., et al.: Improving public transit accessibility for blind riders by crowdsourcing bus stop landmark locations with google street view: An extended analysis. ACM Trans. Access. Comput. (TACCESS) 6(2), 5 (2015)
Hara, K., Chan, C., Froehlich, J.E.: The design of assistive location-based technologies for people with ambulatory disabilities: a formative study, pp. 1757–1768. ACM (2016)
Hara, K., Le, V., Froehlich, J.: Combining crowdsourcing and google street view to identify street-level accessibility problems, pp. 631–640. ACM (2013)
Hara, K., Sun, J., Moore, R., Jacobs, D., Froehlich, J.: Tohme: detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning, pp. 189–204. ACM (2014)
Haresamudram, H., Anderson, D.V., Plötz, T.: On the role of features in human activity recognition, pp. 78–88. ACM (2019)
Harpur, P.: Time to be heard: how advocates can use the convention on the rights of persons with disabilities to drive change. Technical report, Rochester, NY, April 2011. https://papers.ssrn.com/abstract=1804734. Accessed 27 Jan 2021
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016)
Holloway, C., Tyler, N.: A micro-level approach to measuring the accessibility of footways for wheelchair users using the capability model. Transp. Plan. Technol. 36(7), 636–649 (2013). https://doi.org/10.1080/03081060.2013.845434
Iwasawa, Y., Nagamine, K., Yairi, I.E., Matsuo, Y.: Toward an automatic road accessibility information collecting and sharing based on human behavior sensing technologies of wheelchair users. Procedia Comput. Sci. 63, 74–81 (2015)
Iwasawa, Y., Yairi, I.E.: Life-logging of wheelchair driving on web maps for visualizing potential accidents and incidents. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS (LNAI), vol. 7458, pp. 157–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32695-0_16
Iwasawa, Y., Yairi, I.E., Matsuo, Y.: Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 99(4), 1153–1161 (2016)
Jackson, D., Nicholson, J., Stoeckigt, G., Wrobel, R., Thieme, A., Olivier, P.: Panopticon: a parallel video overview system. In: Annual ACM Symposium on User Interface Software and Technology, UIST 2013, pp. 123–130, November 2013. https://doi.org/10.1145/2501988.2502038, https://research.monash.edu/en/publications/panopticon-a-parallel-video-overview-system. Accessed 01 Feb 2020
Kasemsuppakorn, P., Karimi, H.A.: Data requirements and a spatial database for personalized wheelchair navigation, pp. 31–34. Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre (2008)
Kerr, J., Rosenberg, D., Frank, L.: The role of the built environment in healthy aging: Community design, physical activity, and health among older adults. J. Plan. Lit. 27(1), 43–60 (2012). https://doi.org/10.1177/0885412211415283
Kirby, R.L., et al.: Wheelchair skills capacity and performance of manual wheelchair users with spinal cord injury. Arch. Phys. Med. Rehabil. 97(10), 1761–1769 (2016). https://doi.org/10.1016/j.apmr.2016.05.015
Kirby, R., Swuste, J., Dupuis, D.J., MacLeod, D.A., Monroe, R.: The wheelchair skills test: a pilot study of a new outcome measure. Arch. Phys. Med. Rehabil. 83(1), 10–18 (2002). https://doi.org/10.1053/apmr.2002.26823
Kirkham, R.: Can disability discrimination law expand the availability of wearable computers? Computer 48(6), 25–33 (2015)
Kirkham, R.: Using European human rights jurisprudence for incorporating values into design. In: Proceedings of the 2020 ACM Designing Interactive Systems Conference, pp. 115–128. Association for Computing Machinery, New York, July 2020. https://doi.org/10.1145/3357236.3395539. Accessed 26 Jan 2021
Kirkham, R., et al.: Wheeliemap: an exploratory system for qualitative reports of inaccessibility in the built environment, p. 38. ACM (2017)
Kirkham, R., Tannert, B.: Using computer simulations to investigate the potential performance of ‘A to B’ routing systems for people with mobility impairments. In: Mobile HCI 2021: ACM International Conference on Mobile Human-Computer Interaction (2021)
Koch, F.: Die europäische Stadt in Transformation: Stadtplanung und Stadtentwicklungspolitik im postsozialistischen Warschau. Stadt, Raum und Gesellschaft, VS Verlag für Sozialwissenschaften (2010). https://doi.org/10.1007/978-3-531-92109-9, https://www.springer.com/de/book/9783531170909
Kurauchi, Y., Abe, N., Konishi, H., Seshimo, H.: Barrier detection using sensor data from multiple modes of transportation with data augmentation, vol. 1, pp. 667–675. IEEE (2019)
Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikäinen, M.: From bow to CNN: two decades of texture representation for texture classification. Int. J. Comput. Vision 127(1), 74–109 (2019)
Mascetti, S., Civitarese, G., El Malak, O., Bettini, C.: Smartwheels: detecting urban features for wheelchair users’ navigation. Pervasive Mob. Comput. 62, 101115 (2020)
Meinke, U.: Kamera-autos von google fahren wieder durchs ruhrgebiet. WAZ, June 2018. Accessed 01 Feb 2020
Meyers, A.R., Anderson, J.J., Miller, D.R., Shipp, K., Hoenig, H.: Barriers, facilitators, and access for wheelchair users: substantive and methodological lessons from a pilot study of environmental effects. Soc. Sci. Med. 55(8), 1435–1446 (2002)
Mora, H., Gilart-Iglesias, V., Pérez-del Hoyo, R., Andújar-Montoya, M.: A comprehensive system for monitoring urban accessibility in smart cities. Sensors 17(8), 1834 (2017)
Morris, M.R.: Ai and accessibility: a discussion of ethical considerations. Commun. ACM 63(6), 35–37 (2020). https://doi.org/10.1145/3356727, arXiv: 1908.08939
Mourcou, Q., Fleury, A., Dupuy, P., Diot, B., Franco, C., Vuillerme, N.: Wegoto: a smartphone-based approach to assess and improve accessibility for wheelchair users. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2013, pp. 1194–1197 (2013). https://doi.org/10.1109/EMBC.2013.6609720, pMID: 24109907
Nguyen-Dinh, L.V., Waldburger, C., Roggen, D., Tröster, G.: Tagging human activities in video by crowdsourcing. ICMR 2013, pp. 263–270. Association for Computing Machinery, Dallas, April 2013. https://doi.org/10.1145/2461466.2461508. Accessed 30 Jan 2020
Norgate, S.H., et al.: Accessibility of urban spaces for visually impaired pedestrians. Municipal Engineer 165(4), 231–237 (2012)
Ordóñez, F., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)
Palazzi, C.E., Teodori, L., Roccetti, M.: Path 2.0: a participatory system for the generation of accessible routes, pp. 1707–1711. IEEE (2010)
Poppe, R., Rienks, R., van Dijk, B.: Evaluating the future of HCI: challenges for the evaluation of emerging applications. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) Artifical Intelligence for Human Computing. LNCS (LNAI), vol. 4451, pp. 234–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72348-6_12
Reyes-Ortiz, J.L., Oneto, L., Samà Monsonís, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171 (2015). https://doi.org/10.1016/j.neucom.2015.07.085
Rice, M.T., et al.: Quality assessment and accessibility mapping in an image-based geocrowdsourcing testbed. Cartographica: Int. J. Geograph. Inf. Geovis. 53(1), 1–14 (2018)
Rodger, S., Vines, J., McLaughlin, J.: Technology and the politics of mobility: evidence generation in accessible transport activism. CHI 2016, pp. 2417–2429. Association for Computing Machinery, San Jose, May 2016. https://doi.org/10.1145/2858036.2858146. Accessed 30 Jan 2020
Saha, M., et al.: Project sidewalk: a web-based crowdsourcing tool for collecting sidewalk accessibility data at scale. In: CHI 2019 (2019)
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)
Tannert, B., Kirkham, R., Schöning, J.: Analyzing accessibility barriers using cost-benefit analysis to design reliable navigation services for wheelchair users. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11746, pp. 202–223. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29381-9_13
Tannert, B., Schöning, J.: Disabled, but at what cost?: an examination of wheelchair routing algorithms. MobileHCI 2018, pp. 46:1–46:7. ACM, New York (2018). https://doi.org/10.1145/3229434.3229458. Accessed 16 Oct 2018
Trefler, E., Taylor, S.: Prescription and positioning: evaluating the physically disabled individual for wheelchair seating. Prosthet. Orthot. Int. 15(3), 217–224 (1991)
Trewin, S.: Ai fairness for people with disabilities: point of view. arXiv:1811.10670 [cs], November 2018
Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM Trans. Intell. Syst. Technol. (TIST) 2(1), 6 (2011)
Watson, C., Kirkham, R., Kharrufa, A.: Pip kit: an exploratory investigation into using lifelogging to support disability benefit claimants. CHI 2020: CHI Conference on Human Factors in Computing Systems, pp. 1–14. ACM, Honolulu, April 2020. https://doi.org/10.1145/3313831.3376215. Accessed 27 Jan 2021
Weld, G., Jang, E., Li, A., Zeng, A., Heimerl, K., Froehlich, J.E.: Deep learning for automatically detecting sidewalk accessibility problems using streetscape imagery, pp. 196–209 (2019)
Wolf, E., et al.: Vibration exposure of individuals using wheelchairs over sidewalk surfaces. Disabil. Rehabil. 27(23), 1443–1449 (2005)
Yairi, I.E., et al.: Estimating spatiotemporal information from behavioral sensing data of wheelchair users by machine learning technologies. Information 10(3), 114 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Lange, M., Kirkham, R., Tannert, B. (2021). Strategically Using Applied Machine Learning for Accessibility Documentation in the Built Environment. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-85616-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85615-1
Online ISBN: 978-3-030-85616-8
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/