Skip to main content

Strategically Using Applied Machine Learning for Accessibility Documentation in the Built Environment

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12933)

Abstract

There has been a considerable amount of research aimed at automating the documentation of accessibility in the built environment. Yet so far, there has been no fully automatic system that has been shown to reliably document surface quality barriers in the built environment in real-time. This is a mixed problem of HCI and applied machine learning, requiring the careful use of applied machine learning to address the real-world concern of practical documentation. To address this challenge, we offer a framework for designing applied machine learning approaches aimed at documenting the (in)accessibility of the built environment. This framework is designed to take into account the real-world picture, recognizing that the design of any accessibility documentation system has to take into account a range of factors that are not usually considered in machine learning research. We then apply this framework in a case study, illustrating an approach which can obtain a f-ratio of 0.952 in the best-case scenario.

Keywords

  • Accessibility
  • Built-Environment
  • Documentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Accessable. https://www.accessable.co.uk/. Accessed 31 Jan 2020

  2. Convention on the rights of persons with disabilities (CRPD)—united nations enable. https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html. Accessed 27 Jan 2021

  3. Fixmystreet. https://www.fixmystreet.com/. Accessed 18 Sept 2016

  4. Machine learning und die transparenzanforderungen der ds-gvo, p. 44

    Google Scholar 

  5. Openrouteservice. https://www.openrouteservice.org

  6. Photoroute. http://www.photoroute.com/. Accessed 14 Sept 2016

  7. Routino. https://www.routino.org

  8. Venues—axs map. https://www.axsmap.com/. Accessed 31 Jan 2020

  9. World report on disability 2011 (2011)

    Google Scholar 

  10. Ahmetovic, D., Manduchi, R., Coughlan, J.M., Mascetti, S.: Zebra crossing spotter: automatic population of spatial databases for increased safety of blind travelers, pp. 251–258. ACM (2015)

    Google Scholar 

  11. Ahmetovic, D., Manduchi, R., Coughlan, J.M., Mascetti, S.: Mind your crossings: mining GIS imagery for crosswalk localization. ACM Trans. Access. Comput. (TACCESS) 9(4), 11 (2017)

    Google Scholar 

  12. Atkin, R.: Sight line: designing better streets for people with low vision (2010)

    Google Scholar 

  13. Bowtell, J.: Assessing the value and market attractiveness of the accessible tourism industry in Europe: a focus on major travel and leisure companies. J. Tour. Futures 1(3), 203–222 (2015)

    CrossRef  Google Scholar 

  14. Carrington, P., Chang, K., Mentis, H., Hurst, A.: “But, i don’t take steps”: examining the inaccessibility of fitness trackers for wheelchair athletes. ASSETS 2015, pp. 193–201. ACM, New York (2015). https://doi.org/10.1145/2700648.2809845

  15. Chen, W.Y., et al.: Wheelchair-related accidents: relationship with wheelchair-using behavior in active community wheelchair users. Arch. Phys. Med. Rehabil. 92(6), 892–898 (2011)

    CrossRef  Google Scholar 

  16. Clarke, P., Ailshire, J.A., Bader, M., Morenoff, J.D., House, J.S.: Mobility, disability and the urban built environment. Am. J. Epidemiol. 168(5), 506–513 (2008)

    CrossRef  Google Scholar 

  17. Daveler, B., Salatin, B., Grindle, G.G., Candiotti, J., Wang, H., Cooper, R.A.: Participatory design and validation of mobility enhancement robotic wheelchair. J. Rehabil. Res. Dev. 52(6), 739–750 (2015)

    CrossRef  Google Scholar 

  18. Drummond, C., Japkowicz, N.: Warning: Statistical benchmarking is addictive. kicking the habit in machine learning. J. Exp. Theoret. Artif. Intell. 22, 67–80 (2010). https://doi.org/10.1080/09528130903010295

  19. Fast-Company: How apple made the watch work for wheelchair users (2016). https://www.fastcompany.com/3061283/how-apple-made-the-watch-work-for-wheelchair-users

  20. Fotios, S., Uttley, J.: Illuminance required to detect a pavement obstacle of critical size. Light. Res. Technol. 50(3), 390–404 (2018)

    CrossRef  Google Scholar 

  21. Froehlich, J.E., et al.: Grand challenges in accessible maps. Interactions 26, 78–81 (2019)

    CrossRef  Google Scholar 

  22. Garcia-Mendez, Y., Pearlman, J.L., Boninger, M.L., Cooper, R.A.: Health risks of vibration exposure to wheelchair users in the community. J. Spinal Cord Med. 36(4), 365–375 (2013)

    CrossRef  Google Scholar 

  23. Gharebaghi, A., Mostafavi, M.A., Chavoshi, S., Edwards, G., Fougeyrollas, P.: The role of social factors in the accessibility of urban areas for people with motor disabilities. ISPRS Int. J. Geo-Inf. 7(4), 131 (2018)

    CrossRef  Google Scholar 

  24. Ghilardi, M.C., Macedo, R.C., Manssour, I.H.: A new approach for automatic detection of tactile paving surfaces in sidewalks. Procedia Comput. Sci. 80, 662–672 (2016)

    CrossRef  Google Scholar 

  25. Guo, A., Kamar, E., Vaughan, J.W., Wallach, H., Morris, M.R.: Toward fairness in AI for people with disabilities: a research roadmap. arXiv:1907.02227 [cs], August 2019

  26. Gupta, M., et al.: Towards more universal wayfinding technologies: navigation preferences across disabilities. CHI 2020: CHI Conference on Human Factors in Computing Systems, pp. 1–13. ACM, Honolulu, April 2020. https://doi.org/10.1145/3313831.3376581. Accessed 27 Jan 2021

  27. Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80. Event: IEEE Pervasive Computing

    CrossRef  Google Scholar 

  28. Hammerla, N.Y., Kirkham, R., Andras, P., Ploetz, T.: On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution, pp. 65–68. ACM (2013)

    Google Scholar 

  29. Hammerla, N.Y., Plötz, T.: Let’s (not) stick together: pairwise similarity biases cross-validation in activity recognition, pp. 1041–1051. ACM (2015)

    Google Scholar 

  30. Hara, K., et al.: Improving public transit accessibility for blind riders by crowdsourcing bus stop landmark locations with google street view: An extended analysis. ACM Trans. Access. Comput. (TACCESS) 6(2), 5 (2015)

    Google Scholar 

  31. Hara, K., Chan, C., Froehlich, J.E.: The design of assistive location-based technologies for people with ambulatory disabilities: a formative study, pp. 1757–1768. ACM (2016)

    Google Scholar 

  32. Hara, K., Le, V., Froehlich, J.: Combining crowdsourcing and google street view to identify street-level accessibility problems, pp. 631–640. ACM (2013)

    Google Scholar 

  33. Hara, K., Sun, J., Moore, R., Jacobs, D., Froehlich, J.: Tohme: detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning, pp. 189–204. ACM (2014)

    Google Scholar 

  34. Haresamudram, H., Anderson, D.V., Plötz, T.: On the role of features in human activity recognition, pp. 78–88. ACM (2019)

    Google Scholar 

  35. Harpur, P.: Time to be heard: how advocates can use the convention on the rights of persons with disabilities to drive change. Technical report, Rochester, NY, April 2011. https://papers.ssrn.com/abstract=1804734. Accessed 27 Jan 2021

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016)

    Google Scholar 

  37. Holloway, C., Tyler, N.: A micro-level approach to measuring the accessibility of footways for wheelchair users using the capability model. Transp. Plan. Technol. 36(7), 636–649 (2013). https://doi.org/10.1080/03081060.2013.845434

    CrossRef  Google Scholar 

  38. Iwasawa, Y., Nagamine, K., Yairi, I.E., Matsuo, Y.: Toward an automatic road accessibility information collecting and sharing based on human behavior sensing technologies of wheelchair users. Procedia Comput. Sci. 63, 74–81 (2015)

    CrossRef  Google Scholar 

  39. Iwasawa, Y., Yairi, I.E.: Life-logging of wheelchair driving on web maps for visualizing potential accidents and incidents. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS (LNAI), vol. 7458, pp. 157–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32695-0_16

    CrossRef  Google Scholar 

  40. Iwasawa, Y., Yairi, I.E., Matsuo, Y.: Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 99(4), 1153–1161 (2016)

    CrossRef  Google Scholar 

  41. Jackson, D., Nicholson, J., Stoeckigt, G., Wrobel, R., Thieme, A., Olivier, P.: Panopticon: a parallel video overview system. In: Annual ACM Symposium on User Interface Software and Technology, UIST 2013, pp. 123–130, November 2013. https://doi.org/10.1145/2501988.2502038, https://research.monash.edu/en/publications/panopticon-a-parallel-video-overview-system. Accessed 01 Feb 2020

  42. Kasemsuppakorn, P., Karimi, H.A.: Data requirements and a spatial database for personalized wheelchair navigation, pp. 31–34. Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre (2008)

    Google Scholar 

  43. Kerr, J., Rosenberg, D., Frank, L.: The role of the built environment in healthy aging: Community design, physical activity, and health among older adults. J. Plan. Lit. 27(1), 43–60 (2012). https://doi.org/10.1177/0885412211415283

  44. Kirby, R.L., et al.: Wheelchair skills capacity and performance of manual wheelchair users with spinal cord injury. Arch. Phys. Med. Rehabil. 97(10), 1761–1769 (2016). https://doi.org/10.1016/j.apmr.2016.05.015

    CrossRef  Google Scholar 

  45. Kirby, R., Swuste, J., Dupuis, D.J., MacLeod, D.A., Monroe, R.: The wheelchair skills test: a pilot study of a new outcome measure. Arch. Phys. Med. Rehabil. 83(1), 10–18 (2002). https://doi.org/10.1053/apmr.2002.26823

  46. Kirkham, R.: Can disability discrimination law expand the availability of wearable computers? Computer 48(6), 25–33 (2015)

    CrossRef  Google Scholar 

  47. Kirkham, R.: Using European human rights jurisprudence for incorporating values into design. In: Proceedings of the 2020 ACM Designing Interactive Systems Conference, pp. 115–128. Association for Computing Machinery, New York, July 2020. https://doi.org/10.1145/3357236.3395539. Accessed 26 Jan 2021

  48. Kirkham, R., et al.: Wheeliemap: an exploratory system for qualitative reports of inaccessibility in the built environment, p. 38. ACM (2017)

    Google Scholar 

  49. Kirkham, R., Tannert, B.: Using computer simulations to investigate the potential performance of ‘A to B’ routing systems for people with mobility impairments. In: Mobile HCI 2021: ACM International Conference on Mobile Human-Computer Interaction (2021)

    Google Scholar 

  50. Koch, F.: Die europäische Stadt in Transformation: Stadtplanung und Stadtentwicklungspolitik im postsozialistischen Warschau. Stadt, Raum und Gesellschaft, VS Verlag für Sozialwissenschaften (2010). https://doi.org/10.1007/978-3-531-92109-9, https://www.springer.com/de/book/9783531170909

  51. Kurauchi, Y., Abe, N., Konishi, H., Seshimo, H.: Barrier detection using sensor data from multiple modes of transportation with data augmentation, vol. 1, pp. 667–675. IEEE (2019)

    Google Scholar 

  52. Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikäinen, M.: From bow to CNN: two decades of texture representation for texture classification. Int. J. Comput. Vision 127(1), 74–109 (2019)

    CrossRef  Google Scholar 

  53. Mascetti, S., Civitarese, G., El Malak, O., Bettini, C.: Smartwheels: detecting urban features for wheelchair users’ navigation. Pervasive Mob. Comput. 62, 101115 (2020)

    CrossRef  Google Scholar 

  54. Meinke, U.: Kamera-autos von google fahren wieder durchs ruhrgebiet. WAZ, June 2018. Accessed 01 Feb 2020

    Google Scholar 

  55. Meyers, A.R., Anderson, J.J., Miller, D.R., Shipp, K., Hoenig, H.: Barriers, facilitators, and access for wheelchair users: substantive and methodological lessons from a pilot study of environmental effects. Soc. Sci. Med. 55(8), 1435–1446 (2002)

    CrossRef  Google Scholar 

  56. Mora, H., Gilart-Iglesias, V., Pérez-del Hoyo, R., Andújar-Montoya, M.: A comprehensive system for monitoring urban accessibility in smart cities. Sensors 17(8), 1834 (2017)

    CrossRef  Google Scholar 

  57. Morris, M.R.: Ai and accessibility: a discussion of ethical considerations. Commun. ACM 63(6), 35–37 (2020). https://doi.org/10.1145/3356727, arXiv: 1908.08939

  58. Mourcou, Q., Fleury, A., Dupuy, P., Diot, B., Franco, C., Vuillerme, N.: Wegoto: a smartphone-based approach to assess and improve accessibility for wheelchair users. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2013, pp. 1194–1197 (2013). https://doi.org/10.1109/EMBC.2013.6609720, pMID: 24109907

  59. Nguyen-Dinh, L.V., Waldburger, C., Roggen, D., Tröster, G.: Tagging human activities in video by crowdsourcing. ICMR 2013, pp. 263–270. Association for Computing Machinery, Dallas, April 2013. https://doi.org/10.1145/2461466.2461508. Accessed 30 Jan 2020

  60. Norgate, S.H., et al.: Accessibility of urban spaces for visually impaired pedestrians. Municipal Engineer 165(4), 231–237 (2012)

    CrossRef  Google Scholar 

  61. Ordóñez, F., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    CrossRef  Google Scholar 

  62. Palazzi, C.E., Teodori, L., Roccetti, M.: Path 2.0: a participatory system for the generation of accessible routes, pp. 1707–1711. IEEE (2010)

    Google Scholar 

  63. Poppe, R., Rienks, R., van Dijk, B.: Evaluating the future of HCI: challenges for the evaluation of emerging applications. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) Artifical Intelligence for Human Computing. LNCS (LNAI), vol. 4451, pp. 234–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72348-6_12

    CrossRef  Google Scholar 

  64. Reyes-Ortiz, J.L., Oneto, L., Samà Monsonís, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171 (2015). https://doi.org/10.1016/j.neucom.2015.07.085

  65. Rice, M.T., et al.: Quality assessment and accessibility mapping in an image-based geocrowdsourcing testbed. Cartographica: Int. J. Geograph. Inf. Geovis. 53(1), 1–14 (2018)

    CrossRef  Google Scholar 

  66. Rodger, S., Vines, J., McLaughlin, J.: Technology and the politics of mobility: evidence generation in accessible transport activism. CHI 2016, pp. 2417–2429. Association for Computing Machinery, San Jose, May 2016. https://doi.org/10.1145/2858036.2858146. Accessed 30 Jan 2020

  67. Saha, M., et al.: Project sidewalk: a web-based crowdsourcing tool for collecting sidewalk accessibility data at scale. In: CHI 2019 (2019)

    Google Scholar 

  68. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

    CrossRef  Google Scholar 

  69. Tannert, B., Kirkham, R., Schöning, J.: Analyzing accessibility barriers using cost-benefit analysis to design reliable navigation services for wheelchair users. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11746, pp. 202–223. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29381-9_13

    CrossRef  Google Scholar 

  70. Tannert, B., Schöning, J.: Disabled, but at what cost?: an examination of wheelchair routing algorithms. MobileHCI 2018, pp. 46:1–46:7. ACM, New York (2018). https://doi.org/10.1145/3229434.3229458. Accessed 16 Oct 2018

  71. Trefler, E., Taylor, S.: Prescription and positioning: evaluating the physically disabled individual for wheelchair seating. Prosthet. Orthot. Int. 15(3), 217–224 (1991)

    CrossRef  Google Scholar 

  72. Trewin, S.: Ai fairness for people with disabilities: point of view. arXiv:1811.10670 [cs], November 2018

  73. Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM Trans. Intell. Syst. Technol. (TIST) 2(1), 6 (2011)

    Google Scholar 

  74. Watson, C., Kirkham, R., Kharrufa, A.: Pip kit: an exploratory investigation into using lifelogging to support disability benefit claimants. CHI 2020: CHI Conference on Human Factors in Computing Systems, pp. 1–14. ACM, Honolulu, April 2020. https://doi.org/10.1145/3313831.3376215. Accessed 27 Jan 2021

  75. Weld, G., Jang, E., Li, A., Zeng, A., Heimerl, K., Froehlich, J.E.: Deep learning for automatically detecting sidewalk accessibility problems using streetscape imagery, pp. 196–209 (2019)

    Google Scholar 

  76. Wolf, E., et al.: Vibration exposure of individuals using wheelchairs over sidewalk surfaces. Disabil. Rehabil. 27(23), 1443–1449 (2005)

    CrossRef  Google Scholar 

  77. Yairi, I.E., et al.: Estimating spatiotemporal information from behavioral sensing data of wheelchair users by machine learning technologies. Information 10(3), 114 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Tannert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lange, M., Kirkham, R., Tannert, B. (2021). Strategically Using Applied Machine Learning for Accessibility Documentation in the Built Environment. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85616-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85615-1

  • Online ISBN: 978-3-030-85616-8

  • eBook Packages: Computer ScienceComputer Science (R0)