Skip to main content

HyperBrush: Exploring the Influence of Flexural Stiffness on the Performance and Preference for Bendable Stylus Interfaces

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Flexible sensing styluses deliver additional degrees of input for pen-based interaction, yet no research has looked into the integration with creative digital applications as well as the influence of flexural stiffness. We present HyperBrush, a modular flexible stylus with interchangeable flexible components for digital drawing applications. We compare our HyperBrush to rigid pressure styluses in three studies, for brushstroke manipulation, for menu selection and for creative digital drawing tasks. HyperBrush yields comparable results with a commercial pressure pen. We concluded that different flexibilities could pose their own unique advantages analogous to an artist’s assortment of paintbrushes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arduino Mega: (2020). https://store.arduino.cc/usa/mega-2560-r3

  2. Andersen, T.H., Zhai, S.: Writing with music. ACM Trans. Appl. Percept. 7(3), 1–24 (2010). https://doi.org/10.1145/1773965.1773968

    Article  Google Scholar 

  3. Aslan, I., et al.: Creativity support and multimodal pen-based interaction. In: 2019 International Conference on Multimodal Interaction, pp. 135–144. ACM, New York (2019). https://doi.org/10.1145/3340555.3353738

    Chapter  Google Scholar 

  4. Bailly, G., et al.: Flower menus. In: Proceedings of the Working Conference on Advanced Visual Interfaces - AVI 2008, p. 15. ACM Press, New York (2008). https://doi.org/10.1145/1385569.1385575

    Chapter  Google Scholar 

  5. Bend Labs: BendLabs Inc. https://www.bendlabs.com/

  6. Bi, X., et al.: An exploration of pen rolling for pen-based interaction. In: Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology - UIST 2008, p. 191. ACM Press, New York (2008). https://doi.org/10.1145/1449715.1449745

    Chapter  Google Scholar 

  7. Boem, A., Troiano, G.M.: Non-Rigid HCI: a review of deformable interfaces and input. In: Proceedings of the 2019 ACM Designing Interactive Systems Conference - DIS 2019, pp. 885–906. ACM, New York (2019). https://doi.org/10.1145/3322276.3322347

    Chapter  Google Scholar 

  8. Briotto Faustino, D., Girouard, A.: Bend Passwords on BendyPass: a user authentication method for people with vision impairment. In: ACM SIGACCESS Conference on Computers and Accessibility, p. (to appear) (2018)

    Google Scholar 

  9. Buxton, W., et al.: A comparison of pressure and tilt input techniques for cursor control. Conf. Hum. Fact. Comput. Syst. - Proc. E 92-D(9), 801–804 (2005). https://doi.org/10.1587/transinf.E92.D.1683

  10. Buxton, W., et al.: Issues and techniques in touch-sensitive tablet input. Comput. Graph. 19(3), 215–224 (1985). https://doi.org/10.1145/325165.325239

    Article  Google Scholar 

  11. Cherry, E., Latulipe, C.: Quantifying the creativity support of digital tools through the creativity support index. ACM Trans. Comput. Interact. 21(4), 1–25 (2014). https://doi.org/10.1145/2617588

    Article  Google Scholar 

  12. Cho, Y., et al.: RealPen: providing realism in handwriting tasks on touch surfaces using auditory-tactile feedback. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology - UIST 2016, pp. 195–205 (2016). https://doi.org/10.1145/2984511.2984550

  13. Ernst, M.: Bending Blindly: Exploring the Learnability and Usability of Bend Gestures for the Visually Impaired. Carleton University, Ottawa (2015)

    Google Scholar 

  14. Fares, E., et al.: Effects of bend gesture training on learnability and memorability in a mobile game. In: Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces - ISS 2017, pp. 240–245 (2017). https://doi.org/10.1145/3132272.3134142

  15. Fellion, N., et al.: FlexStylus: leveraging bend input for pen interaction. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology - UIST 2017, pp. 375–385. ACM, New York (2017). https://doi.org/10.1145/3126594.3126597

    Chapter  Google Scholar 

  16. Girouard, A., et al.: One-handed bend interactions with deformable smartphones. In: Proceedings of the ACM CHI 2015: CHI Conference on Human Factors in Computing Systems, vol. 1, pp. 1509–1518 (2015). https://doi.org/10.1145/2702123.2702513

  17. Grierson, M., Kiefer, C.: NoiseBear: a wireless malleable multiparametric controller for use in assistive technology contexts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 2013, April 2013, pp. 2923–2926 (2013). https://doi.org/10.1145/2468356.2479575

  18. Grossman, T., et al.: Hover widgets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 2006, p. 861. ACM Press, New York (2006). https://doi.org/10.1145/1124772.1124898

    Chapter  Google Scholar 

  19. Hasan, K., et al.: A-coord input. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems - CHI 2012, p. 805. ACM Press, New York (2012). https://doi.org/10.1145/2207676.2208519

    Chapter  Google Scholar 

  20. Hinckley, K., et al.: Motion and context sensing techniques for pen computing. In: Proceedings of Graphics Interface Conference - GI 2013, pp. 71–78 (2013)

    Google Scholar 

  21. Hinckley, K., et al.: Pen + touch = new tools. In: Proceedings of the 23rd Annual ACM Symposium on User Interface Software and Technology - UIST 2010, p. 27. ACM Press, New York (2010). https://doi.org/10.1145/1866029.1866036

    Chapter  Google Scholar 

  22. Huot, S., et al.: PushMenu: Extending Marking Menus for Pressure-Enabled Input Devices (2008)

    Google Scholar 

  23. Inc., F.: Formlabs Form 2 Printer. https://formlabs.com/3d-printers/form-2/

  24. Kildal, J., Wilson, G.: Feeling it: the roles of stiffness, deformation range and feedback in the control of deformable UI. In: Proceedings of the 14th ACM international conference on Multimodal interaction - ICMI 2012, p. 393. ACM Press, New York (2012). https://doi.org/10.1145/2388676.2388766

    Chapter  Google Scholar 

  25. Kristensson, P., Zhai, S.: SHARK 2. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology - UIST 2004, p. 43. ACM Press, New York (2004). https://doi.org/10.1145/1029632.1029640

    Chapter  Google Scholar 

  26. Kurtenbach, G., Buxton, W.: Limits of expert performance using hierarchic marking menus. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 482–487 (1993). https://doi.org/10.1145/169059.169426

  27. Kurtenbach, G., Buxton, W.: The limits of expert performance using hierarchic marking menus. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 482–487 (1993). https://doi.org/10.1145/169059.169426

  28. Kurtenbach, G., Buxton, W.: User learning and performance with marking menus. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Celebrating Interdependence - CHI 1994, pp. 258–264. ACM Press, New York (1994). https://doi.org/10.1145/191666.191759

    Chapter  Google Scholar 

  29. Lahey, B., et al.: PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays. In: Proceedings of the CHI, Vancouver, pp. 1303–1312 (2011). https://doi.org/10.1145/1978942.1979136

  30. Lo, J., Girouard, A.: Fabricating bendy: design and development of deformable prototypes. IEEE Pervas. Comput. 13(3), 40–46 (2014). https://doi.org/10.1109/MPRV.2014.47

    Article  Google Scholar 

  31. Martín-Gutiérrez, J., Contero, M.: FlexRemote: exploring the effectiveness of deformable user interface as an input device for TV. In: Stephanidis, C. (ed.) HCI 2011. CCIS, vol. 174. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22095-1

    Chapter  Google Scholar 

  32. Microsoft: Microsoft Surface Pro. https://www.microsoft.com/en-ca/p/surface-pro-7/8n17j0m5zzqs?activetab=overview

  33. Murakami, T., et al.: DO-IT: deformable objects as input tools. In: Conference Companion on Human Factors in Computing Systems - CHI 1995, pp. 87–88. ACM Press, New York (1995). https://doi.org/10.1145/223355.223442

    Chapter  Google Scholar 

  34. Ramos, G., et al.: Pressure widgets. In: Proceedings of the 2004 Conference on Human Factors in Computing Systems - CHI 2004, pp. 487–494. ACM Press, New York (2004). https://doi.org/10.1145/985692.985754

    Chapter  Google Scholar 

  35. Ramos, G., Balakrishnan, R.: Zliding. In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology - UIST 2005, p. 143. ACM Press, New York (2005). https://doi.org/10.1145/1095034.1095059

    Chapter  Google Scholar 

  36. Ramos, G.A., Balakrishnan, R.: Pressure marks. In: Conference on Human Factors in Computing Systems, pp. 1375–1384 (2007). https://doi.org/10.1145/1240624.1240834

  37. Schmitz, M., et al.: Flexibles: deformation-aware 3D-printed tangibles for capacitive touchscreens. In: Conference on Human Factors in Computing Systems, May 2017, pp. 1001–1014 (2017). https://doi.org/10.1145/3025453.3025663

  38. Senturia, S.: Microsystem Design. Kluwer Academic Publishers, Boston (2002). https://doi.org/10.1007/b117574

    Book  Google Scholar 

  39. Shorey, P., Girouard, A.: Bendtroller: an exploration of in-game action mappings with a deformable game controller. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 1447–1458. ACM, New York (2017)

    Google Scholar 

  40. Song, H., et al.: Grips and gestures on a multi-touch pen. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems - CHI 2011, p. 1323. ACM Press, New York (2011). https://doi.org/10.1145/1978942.1979138

    Chapter  Google Scholar 

  41. Strohmeier, P., et al.: ReFlex: a flexible smartphone with active haptic feedback for bend input. In: Proceedings of the 10th Anniversary Conference on Tangible Embedded and Embodied Interaction - TEI 2016, pp. 185–192. ACM Press, New York (2016). https://doi.org/10.1145/2839462.2839494

    Chapter  Google Scholar 

  42. Tian, F., et al.: Tilt menu: using the 3D orientation information of pen devices to extend the selection capability of pen-based user interfaces. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 1371–1380 (2008). https://doi.org/10.1145/1357054.1357269

  43. Tian, F., et al.: Tilt menu. In: Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems - CHI 2008, p. 1371. ACM, New York (2008). https://doi.org/10.1145/1357054.1357269

    Chapter  Google Scholar 

  44. Troiano, G.M., et al.: Deformable interfaces for performing music. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI 2015, pp. 377–386. ACM Press, New York (2015). https://doi.org/10.1145/2702123.2702492

    Chapter  Google Scholar 

  45. Watanabe, C., et al.: Generic method for crafting deformable interfaces to physically augment smartphones. In: Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI EA 2014, pp. 1309–1314. ACM Press, New York (2014). https://doi.org/10.1145/2559206.2581307

    Chapter  Google Scholar 

  46. Wightman, D., et al.: TouchMark: flexible document navigation and bookmarking techniques for E-book readers. In: Proceedings of the Graphics Interface 2010, Canadian Information Processing Society, pp. 241–244 (2010)

    Google Scholar 

  47. Xin, Y., et al.: Acquiring and pointing. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems - CHI 2011, p. 849. ACM Press, New York (2011). https://doi.org/10.1145/1978942.1979066

    Chapter  Google Scholar 

  48. Xin, Y., et al.: Natural use profiles for the pen: an empirical exploration of pressure, tilt, and azimuth. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 801–804 (2012). https://doi.org/10.1145/2207676.2208518

  49. Xin, Y., et al.: Natural use profiles for the pen. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems - CHI 2012, p. 801. ACM Press, New York (2012). https://doi.org/10.1145/2207676.2208518

    Chapter  Google Scholar 

  50. Zhao, S., et al.: Zone and polygon menus: using relative position to increase the breadth of multi-stroke marking menus. In: Proceedings of the Conference on Human Factors in Computing Systems, vol. 2, pp. 1077–1086 (2006)

    Google Scholar 

  51. Zhao, S., et al.: Zone and polygon menus. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 2006, p. 1077. ACM Press, New York (2006). https://doi.org/10.1145/1124772.1124933

    Chapter  Google Scholar 

  52. Zhou, X., Ren, X.: A comparison of pressure and tilt input techniques for cursor control. IEICE Trans. Inf. Syst. E 92-D(9), 1683–1691 (2009). https://doi.org/10.1587/transinf.E92.D.1683.

Download references

Acknowledgements

This work was supported and funded by the National Sciences and Engineering Research Council of Canada (NSERC) through the Collaborative Learning in Usability Experiences CREATE grant (2015-465639) and a Discovery grant (2017-06300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Girouard .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (mp4 150701 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero, A., Pietrzak, T., Girouard, A. (2021). HyperBrush: Exploring the Influence of Flexural Stiffness on the Performance and Preference for Bendable Stylus Interfaces. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12935. Springer, Cham. https://doi.org/10.1007/978-3-030-85610-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85610-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85609-0

  • Online ISBN: 978-3-030-85610-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics