Skip to main content

Supporting Sensor-Based Usability Studies Using a Mobile App in Remotely Piloted Aircraft System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12936))

Abstract

Monitoring user workload during task performance is a relevant and widely investigated topic in the aviation field of study due to its associations with the level of safety and number of human errors. The current study aims at assessing the workload of pilots wearing sensors while performing typical fly operations. To this purpose, a mobile app able to record physiological measures while performing usability studies with multiple users, even remotely, is provided. Results coming from a preliminary test with three pilots reveal the usefulness of the app in the evaluation of the workload level for each participant and each task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alaimo, A., Esposito, A., Orlando, C.: Cockpit pilot warning system: a preliminary study. In: 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), pp. 1–4 (2018). https://doi.org/10.1109/RTSI.2018.8548518

  2. Alaimo, A., Esposito, A., Orlando, C., Simoncini, A.: Aircraft pilots workload analysis: heart rate variability objective measures and Nasa-task load index subjective evaluation. Aerospace 7(9), 137 (2020). https://doi.org/10.3390/aerospace7090137

    Article  Google Scholar 

  3. Baevsky, R.M., Chernikova, A.G.: Heart rate variability analysis: physiological foundations and main methods. Cardiometry (10) (2017)

    Google Scholar 

  4. Balducci, F., Grana, C., Cucchiara, R.: Classification of affective data to evaluate the level design in a role-playing videogame. In: 7th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), pp. 1–8 (2015). https://doi.org/10.1109/VS-GAMES.2015.7295766

  5. Balducci, F., Buono, P., Desolda, G., Impedovo, D., Piccinno, A.: Improving smart interactive experiences in cultural heritage through pattern recognition techniques. Pattern Recognit. Lett. 131, 142–149 (2020). https://doi.org/10.1016/j.patrec.2019.12.011. http://www.sciencedirect.com/science/article/pii/S0167865519303745

  6. Boff, K.R., Kaufman, L., Thomas, J.P.: Handbook of perception and human performance (1986)

    Google Scholar 

  7. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  8. Brookhuis, K.A., De Waard, D.: Monitoring drivers’ mental workload in driving simulators using physiological measures. Accid. Anal. Prev. 42(3), 898–903 (2010)

    Article  Google Scholar 

  9. Cao, X., et al.: Heart rate variability and performance of commercial airline pilots during flight simulations. Int. J. Environ. Res. Public Health 16(2), 237 (2019)

    Article  Google Scholar 

  10. Delliaux, S., Delaforge, A., Deharo, J.C., Chaumet, G.: Mental workload alters heart rate variability, lowering non-linear dynamics. Front. Physiol. 10, 565 (2019)

    Article  Google Scholar 

  11. Dumitru, I.M., Boşcoianu, M.: Human factors contribution to aviation safety. Sci. Res. Educ. Air Force-AFASES 2015(1), 49–53 (2015)

    Google Scholar 

  12. Electrophysiology, Task Force of the European Society of Cardiology the North American Society of Pacing: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  13. Fuentes-García, J.P., Clemente-Suárez, V.J., Marazuela-Martínez, M.Á., Tornero-Aguilera, J.F., Villafaina, S.: Impact of real and simulated flights on psychophysiological response of military pilots. Int. J. Environ. Res. Public Health 18(2), 787 (2021)

    Article  Google Scholar 

  14. Gilgen-Ammann, R., Schweizer, T., Wyss, T.: RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 119(7), 1525–1532 (2019). https://doi.org/10.1007/s00421-019-04142-5

    Article  Google Scholar 

  15. Gopher, D., Donchin, E.: Workload: an examination of the concept (1986)

    Google Scholar 

  16. Hancock, P.A., Matthews, G.: Workload and performance: associations, insensitivities, and dissociations. Hum. Factors 61(3), 374–392 (2019). https://doi.org/10.1177/0018720818809590

    Article  Google Scholar 

  17. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, North-Holland, vol. 52, pp. 139–183 (1988). https://doi.org/10.1016/S0166-4115(08)62386-9

  18. Kharoufah, H., Murray, J., Baxter, G., Wild, G.: A review of human factors causations in commercial air transport accidents and incidents: from to 2000–2016. Prog. Aerosp. Sci. 99, 1–13 (2018). https://doi.org/10.1016/j.paerosci.2018.03.002

    Article  Google Scholar 

  19. Lee, Y.H., Liu, B.S.: Inflight workload assessment: comparison of subjective and physiological measurements. Aviat. Space Environ. Med. 74, 1078–84 (2003)

    Google Scholar 

  20. Liu, J., Gardi, A., Ramasamy, S., Lim, Y., Sabatini, R.: Cognitive pilot-aircraft interface for single-pilot operations. Knowl.-Based Syst. 112, 37–53 (2016). https://doi.org/10.1016/j.knosys.2016.08.031

    Article  Google Scholar 

  21. Mansikka, H., Virtanen, K., Harris, D.: Comparison of NASA-TLX scale, modified cooper-harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks. Ergonomics 62, 1–22 (2018). https://doi.org/10.1080/00140139.2018.1471159

    Article  Google Scholar 

  22. Paas, F.G.W.C., Merriënboer, J.J.G.V.: The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum. Factors 35(4), 737–743 (1993). https://doi.org/10.1177/001872089303500412

    Article  Google Scholar 

  23. Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., Van Huffel, S.: Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur. J. Appl. Physiol. 111(7), 1497–1505 (2011). https://doi.org/10.1007/s00421-010-1776-0

    Article  Google Scholar 

  24. Valdehita, S., Ramiro, E., García, J., Puente, J.: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53, 61–86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161.x

    Article  Google Scholar 

  25. Wanyan, X., Zhuang, D., Zhang, H.: Improving pilot mental workload evaluation with combined measures. Bio-Med. Mater. Eng. 24(6), 2283–2290 (2014)

    Article  Google Scholar 

  26. Wierwille, W.W., Casali, J.G.: A validated rating scale for global mental workload measurement applications. In: Proceedings of the Human Factors Society Annual Meeting, vol. 27, no. 2, pp. 129–133 (1983). https://doi.org/10.1177/154193128302700203

  27. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 45(4), 635–644 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the projects “Integrazione dei Sistemi Aeromobili a Pilotaggio Remoto nello spazio aereo non segregato per servizi” (RPASinAir ARS01\(\_\)00820 CUPJ66C18000460005), funded by Italian Ministry of Education, Universities and Research (MIUR) and “Gestione di oggetti intelligenti per migliorare le esperienze di visita di siti di interesse culturale” funded by the Apulia Region under the program Research for Innovation (REFIN) POR Puglia FESR FSE 2014–2020. The authors thank Edilio Formica for his help in the app implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Esposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esposito, A., Valenti, G.D., Balducci, F., Buono, P. (2021). Supporting Sensor-Based Usability Studies Using a Mobile App in Remotely Piloted Aircraft System. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12936. Springer, Cham. https://doi.org/10.1007/978-3-030-85607-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85607-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85606-9

  • Online ISBN: 978-3-030-85607-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics