Skip to main content

Real vs Simulated Foveated Rendering to Reduce Visual Discomfort in Virtual Reality

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)


In this paper, a study aimed at investigating the effects of real (using eye tracking to determine the fixation) and simulated foveated blurring in immersive Virtual Reality is presented. Techniques to reduce the optical flow perceived at the visual field margins are often employed in immersive Virtual Reality environments to alleviate discomfort experienced when the visual motion perception does not correspond to the body’s acceleration. Although still preliminary, our results suggest that for participants with higher self-declared sensitivity to sickness, there might be an improvement for nausea when using blurring. The (perceived) difficulty of the task seems to improve when the real foveated method is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Adhanom, I.B., Griffin, N.N., MacNeilage, P., Folmer, E.: The effect of a foveated field-of-view restrictor on VR sickness. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 645–652. IEEE (2020)

    Google Scholar 

  2. Ang, S., Quarles, J.: GingerVR: an open source repository of cybersickness reduction techniques for unity. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 460–463. IEEE (2020)

    Google Scholar 

  3. Buhler, H., Misztal, S., Schild, J.: Reducing VR sickness through peripheral visual effects. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 517–519. IEEE (2018)

    Google Scholar 

  4. Cao, Z., Jerald, J., Kopper, R.: Visually-induced motion sickness reduction via static and dynamic rest frames. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 105–112. IEEE (2018)

    Google Scholar 

  5. Carnegie, K., Rhee, T.: Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Comput. Graph. Appl. 35(5), 34–41 (2015)

    Article  Google Scholar 

  6. Choroś, K., Nippe, P.: Software techniques to reduce cybersickness among users of immersive virtual reality environments. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11431, pp. 638–648. Springer, Cham (2019).

    Chapter  Google Scholar 

  7. Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 201–210. IEEE (2016)

    Google Scholar 

  8. Iskander, J., Hossny, M., Nahavandi, S.: A review on ocular biomechanic models for assessing visual fatigue in virtual reality. IEEE Access 6(17), 19345–19361 (2018)

    Article  Google Scholar 

  9. Kennedy, R.S., Drexler, J., Kennedy, R.C.: Research in visually induced motion sickness. Appl. Ergon. 41(4), 494–503 (2010)

    Article  Google Scholar 

  10. Nie, G.Y., Duh, H.B.L., Liu, Y., Wang, Y.: Analysis on mitigation of visually induced motion sickness by applying dynamical blurring on a user’s retina. IEEE Trans. Visual Comput. Graph. 26(8), 2535–2545 (2019)

    Article  Google Scholar 

  11. Pai, Y.S., Tag, B., Outram, B., Vontin, N., Sugiura, K., Kunze, K.: GazeSim: simulating foveated rendering using depth in eye gaze for VR. In: ACM SIGGRAPH 2016 Posters, pp. 1–2 (2016)

    Google Scholar 

  12. Patney, A., et al.: Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  13. Sagnier, C., Loup-Escande, E., Lourdeaux, D., Thouvenin, I., Valléry, G.: User acceptance of virtual reality: an extended technology acceptance model. Int. J. Hum. Comput. Interact. 36(11), 993–1007 (2020)

    Article  Google Scholar 

  14. Saredakis, D., Szpak, A., Birckhead, B., Keage, H.A., Rizzo, A., Loetscher, T.: Factors associated with virtual reality sickness in head-mounted displays: a systematic review and meta-analysis. Front. Hum. Neurosci. 14, 96 (2020)

    Article  Google Scholar 

  15. Sevinc, V., Berkman, M.I.: Psychometric evaluation of simulator sickness questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020)

    Article  Google Scholar 

  16. Shi, R., Liang, H.N., Wu, Y., Yu, D., Xu, W.: Virtual reality sickness mitigation methods: a comparative study in a racing game. arXiv preprint arXiv:2103.05200 (2021)

  17. Sipatchin, A., Wahl, S., Rifai, K.: Accuracy and precision of the HTC VIVE PRO eye tracking in head-restrained and head-free conditions. Investig. Ophthalmol. Visual Sci. 61(7), 5071 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ariel Caputo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caputo, A., Giachetti, A., Abkal, S., Marchesini, C., Zancanaro, M. (2021). Real vs Simulated Foveated Rendering to Reduce Visual Discomfort in Virtual Reality. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12936. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85606-9

  • Online ISBN: 978-3-030-85607-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics