Skip to main content

Spatial Prediction and Digital Mapping of Soil Texture Classes in a Floodplain Using Multinomial Logistic Regression

  • Conference paper
  • First Online:
Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation (INFUS 2021)

Abstract

The spatial distribution of physical soil properties is an important requirement in practice as basic input data. Most effective of these properties is soil texture that governs water holding capacity, nutrient availability, and root development. Detailed information on soil texture variability in lateral dimension is crucial for proper crop and land management and environmental studies. Soil texture classes are determined in the soil survey. It may be consist of two or more texture classes for each polygon according to soil mapping units. There is a spatial discrepancy due to variability in soil texture within the mapping polygon. Digital soil mapping (DSM) offers major innovations in removing some of the inconsistencies in traditional soil mapping. DSM methodology can integrate the various raster-based spatial environmental data that field-based soil morphology, soil analyses, and effects of soil formation factors. In this study, the potential of environmental variables generated from digital data to predict soil texture classes were investigated. Curvature parameters indicating the shape of the slope were determined as the most important predictive variables in a flood plain. Overall accuracy was calculated as 63.9% and 47.60% for the training set and the test set, respectively. Digital soil map can be used effectively by farmers in the management of crops in this plain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, A.X.: A similarity model for representing soil spatial information. Geoderma 77, 217–242 (1996). https://doi.org/10.1016/S0016-7061(97)00023-2

    Article  Google Scholar 

  2. Adhikari, K., Hartemink, A.E.: Linking soils to ecosystem services-a global review. Geoderma 262, 101–111 (2016). https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  Google Scholar 

  3. Lorenzetti, R., Barbetti, R., Fantappiè, M., L’Abate, G., Costantini, E.A.C.: Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma 237–238, 237–245 (2015)

    Article  Google Scholar 

  4. MacMillan, R.A., Jones, R.K., McNabb, D.H.: Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs). Comput. Environ. Urban Syst. 28, 175–200 (2004). https://doi.org/10.1016/S0198-9715(03)00019-X

    Article  Google Scholar 

  5. McKenzie, N.J., Ryan, P.J.: Spatial prediction of soil properties using environmental correlation. Geoderma 89, 67–94 (1999). https://doi.org/10.1016/S0016-7061(98)00137-2

    Article  Google Scholar 

  6. Hewitt, A.E.: Predictive modeling in soil survey. Soils Fertil. 3, 305–315 (1993)

    Google Scholar 

  7. Hudson, B.D.: The soil survey as paradigm-based science. Soil Sci. Soc. Am. J. 56, 836–841 (1992). https://doi.org/10.2136/sssaj1992.03615995005600030027x

    Article  Google Scholar 

  8. Caubet, M., Dobarco, M.R., Arrouays, D., Minasny, B., Saby, N.P.: Merging country, continental and global predictions of soil texture: lessons from ensemble modelling in France. Geoderma 337, 99–110 (2019). https://doi.org/10.1016/j.geoderma.2018.09.007

    Article  Google Scholar 

  9. Ma, Y.X., Minasny, B., Malone, B.P., McBratney, A.B.: Pedology and digital soil mapping (DSM). Eur. J. Soil Sci. 70, 216–235 (2019). https://doi.org/10.1111/ejss.12790

    Article  Google Scholar 

  10. McBratney, A.B., Santos, M.M., Minasny, B.: On digital soil mapping. Geoderma 117, 3–52 (2003). https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  11. Bouyoucos, G.J.: Hydrometer method improved for making particle size analyses of soils. Agron. J. 54(5), 464–465 (1962). https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  12. Akgül, M., Başayiğit, L.: Süleyman Demirel Üniversitesi Çiftlik arazisinin detaylı toprak etüdü ve haritalanması. Süleyman Demirel univ. fen bilim. enst. derg. 9(3), 1–10 (2005)

    Google Scholar 

  13. Dharumarajan, S., et al.: Digital soil mapping of key globalsoilmap properties in northern Karnataka plateau. Geoderma Reg. 20, e00250 (2020). https://doi.org/10.1016/j.geodrs.2019.e00250

    Article  Google Scholar 

  14. Gomez, C., Dharumarajan, S., Féret, J.B., Lagacherie, P., Ruiz, L., Sekhar, M.: Use of sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping. Remote Sens. 11, 565 (2019)

    Article  Google Scholar 

  15. Wu, W., Li, A.-D., He, X.-H., Ma, R., Liu, H.-B., Lv, J.-K.: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Comput. Electron. Agric. 144, 86–93 (2018)

    Article  Google Scholar 

  16. Zhang, M., Shi, W.: Systematic comparison of five machine-learning methods in classification and interpolation of soil particle size fractions using different transformed data. Hydrol. Earth Syst. Sci. Discuss. 24(5), 2505–2526 (2020). https://doi.org/10.5194/hess-24-2505-2020

    Article  Google Scholar 

  17. Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C., Bruggeman, A.: A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization. Geoderma 285, 35–49 (2017). https://doi.org/10.1016/j.geoderma.2016.09.019

    Article  Google Scholar 

  18. Piccini, C., Marchetti, A., Rivieccio, R., Napoli, R.: Multinomial logistic regression with soil diagnostic features and land surface parameters for soil mapping of Latium (Central Italy). Geoderma 352, 385–394 (2019). https://doi.org/10.1016/j.geoderma.2018.09.037

    Article  Google Scholar 

  19. Bagheri Bodaghabadi, M., et al.: Digital soil mapping using artificial neural networks and terrain-related attributes. Pedosphere. 25, 580–591 (2015)

    Google Scholar 

  20. Taalab, K., et al.: On the application of Bayesian networks in digital soil mapping. Geoderma 259, 134–148 (2015). https://doi.org/10.1016/j.geoderma.2015.05.014

    Article  Google Scholar 

  21. Ramcharan, A., et al.: Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Sci. Soc. Am. J. 82(1), 186–201 (2018). https://doi.org/10.2136/sssaj2017.04.0122

    Article  Google Scholar 

  22. Gobin, A., Campling, P., Feyen, J.: Soil-landscape modelling to quantify spatial variability of soil texture. Phys. Chem. Earth 26, 41–45 (2001)

    Article  Google Scholar 

  23. Zhao, Z., Chow, T.L., Rees, H.W., Yang, Q., Xing, Z., Meng, F.-R.: Predict soil texture distributions using an artificial neural network model. Comput. Electron. Agric. 65, 36–48 (2009). https://doi.org/10.1016/j.compag.2008.07.008

    Article  Google Scholar 

  24. Ließ, M., Glaser, B., Huwe, B.: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models. Geoderma 170, 70–79 (2012)

    Article  Google Scholar 

  25. Poggio, L., Gimona, A.: 3D mapping of soil texture in Scotland. Geoderma Reg. 9, 5–16 (2017). https://doi.org/10.1016/j.geodrs.2016.11.003

    Article  Google Scholar 

  26. Van Wambeke A.R.: The newhall simulation model for estimating soil moisture and temperature regimes. Department of Crop and Soil Sciences, Cornell University, Ithaca (2000)

    Google Scholar 

  27. Akgül, M., Başayiğit, L., Uçar, Y., Müjdeci, M.: Atabey Ovası Toprakları. S.D.Ü. Ziraat Fakültesi Yay. No: 15, Araştırma Serisi No: 1, Isparta (2001)

    Google Scholar 

  28. Ditzler, C., Scheffe, K., Monger, H.C.: Soil Science Division Staff. Soil survey manual. (eds.). USDA Handbook 18. Government Printing Office, Washington (2017)

    Google Scholar 

  29. USDA: Soil mechanics level I. Module 3 – USDA textural soil classification study Guide. National Employee Development Staff, Soil Conservation Service, United States Department of Agriculture. U.S. Government Printing Office Washington (1987)

    Google Scholar 

  30. Moeys, J.: Soiltexture: functions for soil texture plot, classification and transformation, R package version 1.4.6 (2018). https://CRAN.Rproject.org/package=soiltexture. Accessed 11 Feb 2021

  31. National Aeronautics and Space Administration (NASA): Aster Global Digital Elevation Model (Aster GDEM) NASA Official (2012). (http://www.gdem.aster.ersdac.or.jp). Accessed 25 July 2020

  32. ESRI: ArcGIS Desktop: Release 9.3. ArcGIS user’s guide. Environmental Systems Research Institute, Redlands (2011)

    Google Scholar 

  33. Hengl, T., Reuter, H.I. (ed.): Geomorphometry: concepts, software, and applications. developments in soil science, vol. 33, pp. 772. Elsevier (2008)

    Google Scholar 

  34. Gruber, S., Peckham, S.: Geomorphometry: land-surface parameters and objects in hydrology. Developments in Soil Science, vol 33, pp. 171–194. Elsevier (2008)

    Google Scholar 

  35. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  36. Hosmer, D.W. Lemeshow, S. Sturdivant, R.X. Applied Logistic Regression. JohnWiley & Sons, Hoboken (2013). https://doi.org/10.1002/9781118548387

  37. Afshar, F.A., Ayoubi, S., Jafari, A.: The extrapolation of soil great groups using multinomial logistic regression at regional scale in arid regions of Iran. Geoderma 315, 36–48 (2018). https://doi.org/10.1016/j.geoderma.2017.11.030

    Article  Google Scholar 

  38. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). https://www.R-project.org/. Accessed 11 Feb 2021

  39. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002). https://doi.org/10.1007/978-0-387-21706-2

  40. Malone, B.: Ithir: soil data and some useful associated functions. R package version 1.0 (2018). Accessed 11 Feb 2021

    Google Scholar 

  41. Kuhn, M.: Caret: classification and regression training. R package version 6.0–86 (2020). https://CRAN.R-project.org/package=caret. Accessed 11 Feb 2021

  42. Congalton, R.: A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991). https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  43. Webster, R.: Statistics to support soil research and their presentation. Eur. J. Soil Sci. 52(2), 331–340 (2001). https://doi.org/10.1046/j.1365-2389.2001.00383.x

  44. Zhai, Y., Thomasson, J.A., Boggess, J.E., III., Sui, R.: Soil texture classification with artificial neural networks operating on remote sensing data. Comput. Electron. Agric. 54(2), 53–68 (2006). https://doi.org/10.1016/j.compag.2006.08.001

    Article  Google Scholar 

  45. Pahlavan-Rad, M.R., Akbarimoghaddam, A.: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). CATENA 160, 275–281 (2018)

    Article  Google Scholar 

  46. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modell. 160(3), 249–264 (2003). https://doi.org/10.1016/S0304-3800(02)00257-0

    Article  Google Scholar 

  47. RStudio Team: RStudio: Integrated Development for R. RStudio, Inc., Boston (2019). http://www.rstudio.com/. Accessed 11 Feb 2021

  48. Malone, B.P., Minasny, B., McBratney, A.B.: Categorical soil attribute modeling and mapping. In: Using R for Digital Soil Mapping. PSS, pp. 151–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44327-0_6

    Chapter  Google Scholar 

  49. Adhikari, K., et al.: High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 77(3), 860–876 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by Scientific Research Fund of Isparta University of Applied Sciences. Project number: 2019-YL1–0044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaya, F., Başayiğit, L. (2022). Spatial Prediction and Digital Mapping of Soil Texture Classes in a Floodplain Using Multinomial Logistic Regression. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds) Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-030-85577-2_55

Download citation

Publish with us

Policies and ethics