Skip to main content

A Multimodal Approach for Early Detection of Cognitive Impairment from Tweets

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 319)

Abstract

The proposed approach can filter, study, analyze, and interpret written communications from social media platforms for early detection of Cognitive Impairment (CI) to connect individuals with CI with assistive services in their location. It has three novel functionalities. First, it presents a Big Data-centric Data Mining methodology that uses a host of Natural Language Processing and Information Retrieval approaches to filter and analyze tweets to detect if the tweets were made by a user with some form of CI – for instance, Dementia. Second, it consists of a string-matching functionality that uses the Levenshtein distance algorithm and Fuzzy matching to score tweets indicating the degree of CI. Finally, the framework consists of a text mining approach for detecting the geolocation of the Twitter user so that, if the user is cognitively impaired, caregivers in that area could be alerted and connected to them to facilitate early-stage care, services, therapies, or treatment.

Keywords

  • Natural language processing
  • Data mining
  • Big data
  • Elderly population
  • Cognitive impairment
  • Dementia
  • Geolocation
  • Twitter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85540-6_2
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-85540-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Our world is growing older: UN DESA releases new report on ageing [Internet] (2019). www.un.org, https://www.un.org/development/desa/en/news/population/our-world-is-growing-older.html. Accessed 20 Mar 2021

  2. US Census Bureau. An aging world: 2015 (2018). https://www.census.gov/library/publications/2016/demo/P95-16-1.html. Accessed 20 Mar 2021

  3. Alzheimer’s Disease Facts and Figures [Internet]. Alz.org. https://www.alz.org/alzheimers-dementia/facts-figures. Accessed 20 Mar 2021

  4. Onyeator, I., Okpara, N.: Human communication in a digital age: Perspectives on interpersonal communication in the family. New Media and Mass Communication [Internet] (2019). https://core.ac.uk/download/pdf/234653577.pdf

  5. Shepherd, A., Sanders, C., Doyle, M., Shaw, J.: Using social media for support and feedback by mental health service users: thematic analysis of a Twitter conversation. BMC Psychiatry 15(1), 29 (2015)

    CrossRef  Google Scholar 

  6. Craig, D., Strivens, E.: Facing the times: a young onset dementia support group: FacebookTM style: facing the times: young onset dementia. Australas. J. Ageing 35(1), 48–53 (2016)

    CrossRef  Google Scholar 

  7. Rodriquez, J.: Narrating dementia: self and community in an online forum. Qual. Health Res. 23(9), 1215–1227 (2013)

    CrossRef  Google Scholar 

  8. Milne, A.: Dementia screening and early diagnosis: the case for and against. Health Risk Soc. 12(1), 65–76 (2010)

    CrossRef  Google Scholar 

  9. Stanyon, M.R., Griffiths, A., Thomas, S.A., Gordon, A.L.: The facilitators of communication with people with Dementia in a care setting: an interview study with healthcare workers. Age Ageing 45(1), 164–170 (2016)

    CrossRef  Google Scholar 

  10. Cavedoni, S., Chirico, A., Pedroli, E., Cipresso, P., Riva, G.: Digital biomarkers for the early detection of mild cognitive impairment: artificial intelligence meets virtual reality. Front. Hum. Neurosci. 14, 245 (2020)

    CrossRef  Google Scholar 

  11. Chertkow, H., Nasreddine, Z., Joanette, Y., Drolet, V., Kirk, J., Massoud, F., et al.: Mild cognitive impairment and cognitive impairment, no dementia: Part A, concept and diagnosis. Alzheimer’s Dement. 3(4), 266–282 (2007)

    CrossRef  Google Scholar 

  12. Thakur, N., Han, C.Y.: An intelligent ubiquitous activity aware framework for smart home. In: Ahram, T., Taiar, R., Langlois, K., Choplin, A. (eds.) Human Interaction, Emerging Technologies and Future Applications III. Advances in Intelligent Systems and Computing, vol. 1253, pp. 296–302. Springer , Cham (2021). https://doi.org/10.1007/978-3-030-55307-4_45

    CrossRef  Google Scholar 

  13. Darby, D., Maruff, P., Collie, A., McStephen, M.: Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 59(7), 1042–1046 (2002)

    CrossRef  Google Scholar 

  14. Sheinerman, K.S., Tsivinsky, V.G., Crawford, F., Mullan, M.J., Abdullah, L., Umansky, S.R.: Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY). 4(9), 590–605 (2012)

    CrossRef  Google Scholar 

  15. Folstein, M.F., Folstein, S.E., McHugh, P.R.: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)

    CrossRef  Google Scholar 

  16. Choi, S.H., Park, M.H.: Three screening methods for cognitive dysfunction using the Mini-Mental State Examination and Korean Dementia Screening Questionnaire: three screening using MMSE and KDSQ. Geriatr. Gerontol. Int. 16(2), 252–258 (2016)

    CrossRef  Google Scholar 

  17. Wikipedia contributors. Levenshtein distance [Internet]. Wikipedia, The Free Encyclopedia (2021). https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1011098657. Accessed 20 Mar 2021

  18. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Yale, E.T.: Rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2006. ACM Press, New York (2006)

    Google Scholar 

  19. Twitter Help Center. About profile visibility settings [Internet]. Twitter.com. Twitter Help Center (2021). https://help.twitter.com/en/safety-and-security/birthday-visibility-settings. Accessed 20 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalya Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Thakur, N., Han, C.Y. (2022). A Multimodal Approach for Early Detection of Cognitive Impairment from Tweets. In: Ahram, T., Taiar, R. (eds) Human Interaction, Emerging Technologies and Future Systems V. IHIET 2021. Lecture Notes in Networks and Systems, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-85540-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85540-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85539-0

  • Online ISBN: 978-3-030-85540-6

  • eBook Packages: EngineeringEngineering (R0)