Skip to main content

Multiple Testing of Conditional Independence Hypotheses Using Information-Theoretic Approach

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2021)

Abstract

In the paper we study the multiple testing problem for which individual hypotheses of interest correspond to conditional independence of the two variables X and Y given each of the several conditioning variables. Approaches to such problems avoiding inflation of probability of spurious rejections are widely studied and applied. Here we introduce a direct approach based on Joint Mutual Information (JMI) statistics which restates the problem as a problem of testing of a single hypothesis. The distribution of the test statistics JMI is established and shown to be well numerically approximated for a single data sample. The corresponding test is studied on artificial data sets and is shown to work promisingly when compared to general purpose multiple testing methods such as Bonferroni or Simes procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    github.com/lazeckam/JMI_GlobalNull.

References

  1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Benjamini, Y., Yakutieli, D.: The control of false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  Google Scholar 

  3. Brown, G., Pocock, A., Zhao, M., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13(1), 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Buhlmann, P., de Geer, S.: Statistics for High-Dimensional Data. Springer, New York (2006). https://doi.org/10.1007/978-3-642-20192-9

    Book  MATH  Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, New York (2006)

    Google Scholar 

  6. Duchesne, P., Lafaye de Micheaux, P.: Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods. Comput. Stat. Data Anal. 54, 858–862 (2010)

    Google Scholar 

  7. Dudoit, S., van der Laan, M.J.: Multiple Testing Procedures with Applications to Genomics. Springer, New York (2009). https://doi.org/10.1007/978-0-387-49317-6

    Book  MATH  Google Scholar 

  8. Johnson, A.: MIMIC-III, a freely accessible critical care database. Scientific Data 3, 1–9 (2016)

    Article  Google Scholar 

  9. Kubkowski, M., Łazȩcka, M., Mielniczuk, J.: Distributions of a general reduced-order dependence measure and conditional independence testing. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12143, pp. 692–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50436-6_51

    Chapter  Google Scholar 

  10. Kullback, S.: Information Theory and Statistics. Smith, P. (1978)

    Google Scholar 

  11. Moskvina, V., Schmidt, K.: On multiple-testing correction in genome-wide association studies. Genet. Epidemiol. 32, 1567–573 (2008)

    Article  Google Scholar 

  12. Simes, R.: An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986)

    Article  MathSciNet  Google Scholar 

  13. Storey, J.: A direct approach to false discovery rates. J. Royal Stat. Soc. B 64(3), 479–498 (2002)

    Article  MathSciNet  Google Scholar 

  14. Vergara, J., Estevez, P.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24(1), 175–186 (2014)

    Article  Google Scholar 

  15. Yang, H., Moody, J.: Data visualization and feature selection: new algorithms for nongaussian data. Adv. Neural. Inf. Process. Syst. 12, 687–693 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Mielniczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łazȩcka, M., Mielniczuk, J. (2021). Multiple Testing of Conditional Independence Hypotheses Using Information-Theoretic Approach. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2021. Lecture Notes in Computer Science(), vol 12898. Springer, Cham. https://doi.org/10.1007/978-3-030-85529-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85529-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85528-4

  • Online ISBN: 978-3-030-85529-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics