Skip to main content

A Framework for Explainable Concept Drift Detection in Process Mining

  • Conference paper
  • First Online:
Business Process Management (BPM 2021)


Rapidly changing business environments expose companies to high levels of uncertainty. This uncertainty manifests itself in significant changes that tend to occur over the lifetime of a process and possibly affect its performance. It is important to understand the root causes of such changes since this allows us to react to change or anticipate future changes. Research in process mining has so far only focused on detecting, locating and characterizing significant changes in a process and not on finding root causes of such changes. In this paper, we aim to close this gap. We propose a framework that adds an explainability level onto concept drift detection in process mining and provides insights into the cause-effect relationships behind significant changes. We define different perspectives of a process, detect concept drifts in these perspectives and plug the perspectives into a causality check that determines whether these concept drifts can be causal to each other. We showcase the effectiveness of our framework by evaluating it on both synthetic and real event data. Our experiments show that our approach unravels cause-effect relationships and provides novel insights into executed processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. van der Aalst, W.M.P.: Process mining: Data science in action. Springer (2016).

  2. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Google Scholar 

  4. Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clustering. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol. 116, pp. 154–168. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  5. Aminikhanghahi, S., Cook, D.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017)

    Article  Google Scholar 

  6. Berger, F.: Mining event log data to improve a loan application process. BPI Challenge (2017).

  7. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python (PM4PY): bridging the gap between process-and data science. arXiv preprint arXiv:1905.06169 (2019)

  8. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. CAiSE , 391–405 (2011)

    Google Scholar 

  9. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Networks Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  10. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process mining meets causal machine learning: discovering causal rules from event logs. In: ICPM, pp. 129–136 (2020)

    Google Scholar 

  11. Brockhoff, T., Uysal, M.S., van der Aalst, W.M.P.: Time-aware concept drift detection using the earth mover’s distance. In: ICPM, pp. 33–40 (2020)

    Google Scholar 

  12. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. IDA 7619, 90–102 (2012)

    Google Scholar 

  13. van Dongen, B.: BPI: Challenge (2017)

    Google Scholar 

  14. Gachomo, D.: The power of the pruned exact linear time (PELT) test in multiple changepoint detection. Am. J. Theor. Appl. Stat. 4, 581 (2015)

    Article  Google Scholar 

  15. Granger, C.: Some recent development in a concept of causality. J. Econometrics 39(1), 199–211 (1988)

    Article  MathSciNet  Google Scholar 

  16. Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. OTM 10033, 300–317 (2016)

    Google Scholar 

  17. Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P.M., Buurman, H.: Detecting change in processes using comparative trace clustering. SIMPDA 1527, 95–108 (2015)

    Google Scholar 

  18. Hompes, B.F.A., Maaradji, A., Rosa, M.L., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. CAiSE 10253, 177–192 (2017)

    Google Scholar 

  19. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)

    Article  Google Scholar 

  20. Leontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. BPM 9253, 297–313 (2015)

    Google Scholar 

  21. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Fast and accurate business process drift detection. BPM 9253, 406–422 (2015)

    Google Scholar 

  22. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    Article  Google Scholar 

  23. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. SCC. , 1–8 (2017)

    Google Scholar 

  24. Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change point detection and dealing with gradual and multi-order dynamics in process mining. BIR 229, 161–178 (2015)

    Google Scholar 

  25. de Medeiros, A.K.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: extending the \(\alpha \)-algorithm to mine short loops. In: BETA Working Paper Series. vol. WP 113 (2004)

    Google Scholar 

  26. Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. BPM 43, 69–80 (2009)

    Google Scholar 

  27. Ostovar, A., Maaradji, A., Rosa, M.L., ter Hofstede, A.H.M.: Characterizing drift from event streams of business processes. CAiSE 10253, 210–228 (2017)

    Google Scholar 

  28. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: IJCNN, pp. 816–823 (2014)

    Google Scholar 

  29. Pourbafrani, M., van der Aalst, W.M.P.: PMSD: data-driven simulation using system dynamics and process mining. BPM (PhD/Demos) 2673, 77–81 (2020)

    Google Scholar 

  30. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Scenario-based prediction of business processes using system dynamics. OTM 11877, 422–439 (2019)

    Google Scholar 

  31. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Supporting automatic system dynamics model generation for simulation in the context of process mining. BIS 389, 249–263 (2020)

    Google Scholar 

  32. Ratzer, A.V., et al.: CPN tools for editing, simulating, and analysing coloured petri nets. ICATPN 2679, 450–462 (2003)

    MathSciNet  Google Scholar 

  33. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics on process graphs. In: S-BPM ONE, p. 6 (2017)

    Google Scholar 

  34. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. BPMs 132, 174–186 (2012)

    Google Scholar 

  35. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods. Sign. Process. 167, 107299 (2020)

    Google Scholar 

  36. Weber, P., Bordbar, B., Tiño, P.: Real-time detection of process change using process mining. ICCSW DTR11–9, 108–114 (2011)

    Google Scholar 

  37. Weijters, A., van der Aalst, W.M.P., Medeiros, A.: Process mining with the heuristics miner-algorithm. CIRP Annal.-Manufact. Technol. 166, 1–34 (2006)

    Google Scholar 

  38. Yeshchenko, A., Ciccio, C.D., Mendling, J., Polyvyanyy, A.: Comprehensive process drift detection with visual analytics. ER 11788, 119–135 (2019)

    Google Scholar 

  39. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. OTM 10573, 524–542 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jan Niklas Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adams, J.N., van Zelst, S.J., Quack, L., Hausmann, K., van der Aalst, W.M.P., Rose, T. (2021). A Framework for Explainable Concept Drift Detection in Process Mining. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics