Skip to main content

Enhanced Root Morphogenesis in Non-legumes as Induced by Rhizobacteria Bacillus spp.

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Rhizobacteria exert tremendous beneficial effects on various crop plants especially the non-legumes through multidimensional approaches namely biofertilizing, bioenhancing and biocontrolling activities. They create a conducive environment in the rhizosphere, endorhizosphere, apoplastic areas of tissue in the roots as well as stem, and form new organs by producing and secreting various types of phytohormones. Among the bacteria, species of the genera Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Burkholderia, Herbaspirillum, Klebsiella, Pseudomonas, Rhizobium, Bradyrhizobium, Caulobacter, Chromobacterium, Erwinia, Flavobacterium, Micrococcus, Pseudomonas and Serratia are main candidates for the beneficial effects on plants. Among them Bacillus spp. are gaining prominence; application of B. sphaerichus strain UPMB10 showed beneficial effects on banana, oil palm, rice, sweet potato and other non-legumes. The bacteria are also endophytic, and found in the apoplastic area of banana roots as have been observed by transmission electron micrography (TEM). Certain rhizobacteria isolated from rice seeds have shown beneficial effects on rice under field and laboratory conditions. Proliferation of root hairs in rice due to the application of Rhizobium and Bacillus has been documented in Indica type of rice under humid tropic condition. Plant juvenile hormones like auxin and gibberellin have been isolated from Bacillus spp.-inoculated roots of rice, banana and oil palm, which triggered induction of meristem organization in pericycle in the young roots and consequently forming the lateral roots as documented by various researchers. Inoculation process by Bacillus spp. resulted in more root hairs and seedling vigor index of rice and enhanced root growth in banana tissue-cultured plantlets under hydroponic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed A, Hasnain S (2010) Auxin-producing bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    Article  CAS  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2001) Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. J Oil Palm Res 13(1):42–49

    Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Asari S, Tarkowská D, Rolčík J, Novák O, Velázquez Palmero BS, Meijer J (2017) Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    Article  CAS  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with florescently labelled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol, 61:1013–1019

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, Mooney SJ, Bennett MJ, Dinneny JR (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci U S A 111(25):9319–9324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospireillum/plant relationship: environmental and physiological advances (1990–1996). Can J Microbiol, 43:103–121

    Google Scholar 

  • Bashan Y, Levanony H (1988) Interaction between A. brasilense Cd and wheat root cells during early stages of root colonization. In: Klingmuller W (ed) Azospirillum IV: genetics, physiology, ecology. Springer, Berlin, pp 166–173

    Chapter  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Klein E (1986) Evidences for a weak active external adsorption of A. brasilense Cd to wheat roots. J Gen Appl Microbiol 132:3069–3073

    Google Scholar 

  • Bashan Y, Levanony H, Ziv-Vecht O (1987) The fate of field-inoculated Azospirillum brasilense cd in wheat rhizosphere during the growing season. Can J Microbiol 33:1074–1079

    Article  Google Scholar 

  • Bashan Y, Levanony H, Mitiku G (1989) Changes in proton efflux in intact wheat roots inoculated by A. brasilense Cd. Can J Microbiol 35:691–697

    Article  CAS  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of seawater-irrigated oilseed halophyte Salicorniabigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soil 32:265–272

    Google Scholar 

  • Bashan Y, Harrison SK, Whit Moyer RE (1990) Enhanced growth of wheat and soybean plants inoculated with A. brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeckman T, Burssens S, Inzé D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411

    CAS  PubMed  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65(1):639–666

    Article  CAS  PubMed  Google Scholar 

  • Bellone CH, de Bellone SDVC, Pedraza RO, Monzon MA (1997) Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus. Soil Biol Biochem 29(56):965–967

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Brimecombe, J. M., De Leij, F. A. & Lynch, J. M. (2001). The effect of root exudates on rhizosphere microbial population. In The Rhizosphere. Ed: Pinton, R., Varanini, Z, and Nannipieri, P pp. 95-140. Marcel Dekker Inc, New York

    Google Scholar 

  • Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 19(17):2131–2142

    Article  Google Scholar 

  • Datta S, Kim CM, Pernas, M.& Dolan, L. (2011) Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346(1):1–14

    Article  CAS  Google Scholar 

  • De Rybel B, Audenaert D, Xuan W et al (2012) A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 8(9):798–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Gallo M, Fendrik I (1994) The Rhizosphere and Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, London, pp 57–85

    Google Scholar 

  • Dittmer HJ (1937) A quantitative study of the roots and root hairs of a winter rye plant (Secale creale). Am J Bot 24:417

    Article  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. PNAS, 105(25):8790–8794

    Google Scholar 

  • Foster RC, Bowen GD (1982) In: Lacy GH (ed) Plant surfaces and bacterial growth: the rhizosphere, phytopathogenic prokaryotes. Academic, New York, pp 159–185

    Google Scholar 

  • Freitas JRD, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Fukaki H, Yoko H, Masao T (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Tabassum B, Fathi E, Allah A (2019) Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Google Scholar 

  • Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inze D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Nat Acad Sci USA 101:5146–5151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Wagi S, Ahmed A (2017) Phyllospheric bacterial treatments improve growth in Helianthus annuus L. RADS J Biol Res Appl Sci 9(1):2521–8573

    Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    Article  CAS  PubMed  Google Scholar 

  • Jacoud C, Job D, Wadoux P, Bally R (1999) Initiation of root growth stimulation by Azospirillum lipoferumCRT1 during maize seed germination. Can J Microbiol 45:339–342

    Article  CAS  Google Scholar 

  • Joseph G, Dubrovsky JG, Rost TL (2012) Pericycle. In: Encyclopedia in life science. Facts On File, New York

    Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan M, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg

    Google Scholar 

  • Laplaze L, Parizot B, Baker A, Ricaud L, Martinière A, Auguy F, Franche C, Nussaume L, Bogusz, D.& Haseloff, J. (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442

    Article  CAS  PubMed  Google Scholar 

  • Levanony H, Bashan Y (1989) Enhancement of cell division in wheat root tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Can J Bot 67:2213–2216

    Article  Google Scholar 

  • Levanony H, Bashan Y, Romano B, Klein E (1989) Ultra-structural colonization and identification of A. brasilense Cd on and within wheat root by immuno-gold labelling. Plant Soil 117:207–218

    Article  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  Google Scholar 

  • Malamy JE (2009) Lateral root formation. Ann Plant Rev 37: Root development, 37:83–126, Beeckman eds

    Google Scholar 

  • Marhavy P, Vanstraelen M, Rybel1 B, Zhaojun D, Bennett MJ, Beeckman T, Benkova E (2012) Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J:1–10

    Google Scholar 

  • Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S (2018) Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol 200(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Mia MAB (2015) Nutrition of crop plants. Nova Science Publisher, New York

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2009) Enhanced emergence and vigour seedling production of rice through plant growth promoting bacterial inoculation. Res J Seed Sci 2:96–104

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2013) Biofertilizer for banana production. Lambert Academic Publisher, Germany

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Marziah M (1999) External and internal root colonization of Azospirillumbrasilenseon tissue-cultured banana plantlets. In: Vidyadaran MK, Tengku ASTM (eds) Proceedings of the eighth scientific conference of Electron Microscopy Society Malaysia. Genting Highlands, Pahang, pp 173–174

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Marziah M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16(1&2):11–15

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Maziah M (2009a) Use of plant growth promoting bacteria in banana: A new insight for sustainable banana production. Int J Agric Biol 12(3):459–467

    Google Scholar 

  • Mia MAB, Shamsuddin, ZH, Zakaria W, Marziah M (2009b) The effect of rhizobacterial inoculation on growth and nutrient accumulation of tissue-cultured banana plantlets under low N-fertilizer regime. Afr. J. Biotechnol, 8(21):5855–5866 https://doi.org/10.5897/AJB09.882

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2010a) Rhizobacteria as bioenhancer for growth and yield of banana (Musa spp. cv. “Berangan”). Sci Hortic 126(2):80–87

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Marziah M (2010b) Rhizobacterial inoculation on growth and nitrogen incorporation in tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4(2):85–90

    Google Scholar 

  • Mia MAB, Hossain MM, Shamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen nutrition in crops, with special reference to rice and banana. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin/Heidelberg

    Google Scholar 

  • Mia MAB, Naher UA, Panhwar QA, Islam MT (2016) Growth promotion of non-legumes by the inoculation of Bacillus species. In: Islam MT et al (eds) Bacillus and Agrobiotechnology. Springer

    Google Scholar 

  • Murty MG, Ladha, JK (1987) Differential colonization of Azospirillum lipoferum on roots of two varieties of rice (Oryza sativa L.). Biol Fertil Soil 4:3–7

    Google Scholar 

  • Murty MG, Ladha JK (1988) Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponics conditions. Plant Soil 108:281–285

    Article  Google Scholar 

  • Naher UA, Radziah O, SitiZuraidah Y (2013) Effect of urea-N on growth and indoleacetic acid production of Stenotrophomonas maltophilia (Sb16) isolated from rice growing soils in Malaysia. Chilean J Agricult Res 73(2):187–192

    Google Scholar 

  • Okon Y, Kapulnik Y, Sarig S (1988) Field inoculation studies with Azospirillum in Israel. In: Suba Rao NS (ed) Biological nitrogen fixation, recent developments. IBH, Oxford/New Delhi, p 175

    Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW et al (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12:e0173203

    Google Scholar 

  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Benne MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14(7):399–408

    Google Scholar 

  • Persello-Cartieaux F, David P, Sarrobert C, Thibaud MC, Achouak W, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198

    Article  CAS  PubMed  Google Scholar 

  • Peyush P, Moriyama S, Takahashi A (2000) Molecular cloning of growth hormone complementary DNA in Barfin Flounder (Verasper moseri). Mar Biotechnol 2:21–26

    Article  CAS  Google Scholar 

  • Potters G, Pasternak T, Guisez Y, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Holguin G, Bernard RG, Bashan Y (1999) Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in sea water. FEMS Microbiol Ecol 29:283–292

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiol Plant 35:3315–3322

    Article  CAS  Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci 110:271

    Article  Google Scholar 

  • Saubidet MI, Barneix AJ (1998) Growth stimulation and nitrogen supply to wheat plants inoculated with Azospirillum brasilense. J Plant Nutr 21(12):2565–2577

    Article  CAS  Google Scholar 

  • Sioussaram D (1968) Observacions preliminaries sur Ienracinement des bananiers dans les sols de la station de neufchateau, Guadeloupe. Fruits 23:473–479

    Google Scholar 

  • Skoog F (1938) Absorption and translocation of auxin. Am J Bot 25(5):361–372

    Article  CAS  Google Scholar 

  • Subba Rao NS (1995) Nitrogen fixation in free-living and associative symbiotic bacteria. In: Soil microorganisms and plant growth. IBH Publishing Co. Pvt. Ltd, Oxford

    Google Scholar 

  • Suslow TV (1982) Role of root-colonizing bacteria in plant growth. In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes, vol 1. Academic, New York, pp 186–223

    Google Scholar 

  • Swennen R, De Langhe E, Janssen J, Decoene D, D. (1986) Study of the root development of some Musa cultivars in hydroponics. Fruits 41(9):515–524

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Theunis M (2004) Flavonoids, NodD1, NodD2, and Nod-Box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 17:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Vissenberg K, Gonzalez N (2020) Plant organ and tip growth. J Exp Bot 71(8):2363–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagi S, Ahmed A (2019) Bacillus spp.: potent microfactories of bacterial IAA. PeerJ 7:7258

    Google Scholar 

  • Waidmann S., Sarkel E, & Kleine-Vehn J. (2020). Same same, but different: growth responses of primary and lateral roots Journal of Experimental Botany, 23, 71(8):2397-2411

    Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

  • Wei CT (1997) Development and application of biofertilizer in China. In Proceedings Biological Nitrogen Fixation: The Global and Future Needs, Italy, pp 71–72

    Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Wu HJ, Zang H, Wu L, Zhu Q, Gao X (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663

    Article  CAS  PubMed  Google Scholar 

  • Xuan W, Band LR, Kump RP, Damme DV, Parizot B, De Ro G, Opdenacker D, Barbara Möller K, Skorzinsk N, Njo MF, Rybel BD, Audenaert D, Nowack MK, Vanneste S, Beeckman T (2016) Cyclic programmed cell death stimulates hormone signalling and root development in Arabidopsis. Science 351(6271):384–387

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baset Mia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mia, M.A.B. (2022). Enhanced Root Morphogenesis in Non-legumes as Induced by Rhizobacteria Bacillus spp.. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_7

Download citation

Publish with us

Policies and ethics