Skip to main content

Role of Bacillus Species in Alleviating Biotic Stress in Crops

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Feeding the growing world population has become a crucial issue with each passing year. At present, the prime focus of farmers and scientists is on maximizing yield and minimizing the damages to food crops by diseases and harsh environmental conditions. Synthetic pesticides and fertilizers are being used abundantly in agricultural fields to increase productivity but the indiscriminate use of synthetic chemicals has resulted in severe pollution of soil and water. Consequently, practices as the use of biopesticides and biofertilizers have become an eco-friendly alternative for harmful agrochemicals, thus encouraging sustainable agriculture. A group of bacteria characterized as plant growth-promoting rhizobacteria (PGPR) has been known to reinforce plant growth and development and also mitigating abiotic and biotic stresses.

Many weeds and phytopathogens such as bacteria, fungi, viruses, and nematodes may induce biotic stress in their plant hosts resulting in reduced biomass, crop quality, and yield. Various species of Bacillus are well-known PGPR and are also considered as potential biocontrol agents for many plant diseases. These are used to combat biotic stresses by inducing physiological changes in plants and secreting several metabolites in response. The present chapter focuses on the biotic stress management by Bacillus spp. and the various mechanisms involved in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah EF, Ezzat SM, Tohamy MR (2007) Bacillus subtilis as an alternative biologically based strategy for controlling Fusarium wilt disease in tomato: a histological study. Phytoparasitica 35:474–478

    Google Scholar 

  • Achari GA, Ramesh R (2014) Diversity, biocontrol and plant growth promoting abilities of xylem residing bacteria from Solanaceous crops. Int J Microbiol 296521:1–14

    Article  Google Scholar 

  • Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M et al (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. Peer J 4(6):e5122

    Article  Google Scholar 

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Ind J Fund Appl Life Sci 1(3):7–13

    Google Scholar 

  • Albayrak ÇB (2019) Bacillus species as biocontrol agents for fungal plant pathogens. In: Islam M, Rahman M, Pandey P, Boehme M, Haesaert G (eds) Bacilli and agrobiotechnology: phytostimulation and biocontrol, Bacilli in climate resilient agriculture and bioprospecting, vol 2. Springer, Cham, pp 239–265

    Google Scholar 

  • Araújo FF, Marchesi GVP (2009) Use of Bacillus subtilis in the control of root-knot nematode and the growth promotion in tomato. Cienc Rural 39(5):1558–1561

    Article  Google Scholar 

  • Araújo FF, Silva JFV, Araújo ASF (2002) Influence of Bacillus subtilis on the Heterodera glycineseclosion, orientation and infection in soybean. Cienc Rural 32(2):197–203

    Article  Google Scholar 

  • Asari S, Onega M, Debois D, Pawn ED, Chen K, Bejai S, Meijer J (2017) Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Ann Bot 120(4):551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashwini N, Srividya S (2014) Potentiality of Bacillus subtilis as biocontrol agent for management ofanthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech 4(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Ayed HB, Hmidet N, Bechet M, Chollet M, Chataigné G, Leclère V et al (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49(10):1699–1707

    Article  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baysal O, Caliskan M, Yesilova O (2008) An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporumf. spradicis-lycopersici. Physiol Mol Plant Pathol 73(1–3):25–32

    Article  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. PNAS 110(17):E1621–E1630

    Google Scholar 

  • Boubakri H (2018) The role of ascorbic acid in plant–pathogen interactions. In: Hossain M, Munne-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 255–271

    Google Scholar 

  • Boubakri H (2020) Induced resistance to biotic stress in plants by natural compounds: possible mechanisms. In: Hossain MA, Liu F, Huang B (eds) Mediated stress and cross-stress tolerance in crop plants. Elsevier, London, pp 79–99

    Chapter  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Google Scholar 

  • Cao Y, Xu Z, Ling N (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39

    Article  CAS  Google Scholar 

  • Casals C, Teixidó N, Viñas I, Silvera E, Lamarca N, Usall J (2010) Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. Eur J Plant Pathol 128:51–63

    Article  CAS  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world – pesticides use and management. InTech Open, Rijeka, pp 274–302

    Google Scholar 

  • Chebotar VK, Makarova NM, Shaposhnikov AI, Kravchenko LV (2009) Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Appl Biochem Microbiol 45(4):419–423

    Article  CAS  Google Scholar 

  • Chen W, Ding C, Shen Q, Zhang R (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366:453–466

    Article  Google Scholar 

  • Chien Y, Huang C (2020) Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur J Plant Pathol 156:995–1003

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol Control 26(2):153–161

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Essaïd Barka A (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defence. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Correa EB, Bettiol W, Sutton JC (2010) Biocontrol of root rot (Pythium aphanidermatum) and growth promotion with Pseudomonas chlororaphis 63-28 and Bacillus subtilis GB03 in hydroponic lettuce. Summa Phytopathol 36(4):275–281

    Article  Google Scholar 

  • Crane JM, Bergstrom GC (2014) Spatial distribution and antifungal interactions of a bacillus biological control agent on wheat surfaces. Biol Control 78:23–32

    Article  Google Scholar 

  • Cui L, Yang C, Wei L, Li T, Chen X (2020) Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol Control 141:104156

    Article  CAS  Google Scholar 

  • Damalas CA, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8(1):13

    Article  Google Scholar 

  • Dhouib H, Zouari I, Abdallah DB, Belbahri L, Taktak W, Triki MA, Tounsi S (2019) Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control 139:104092

    Article  CAS  Google Scholar 

  • Dimkić I, Stanković S, NiÅ¡avić M, Petković M, Ristivojević P, Fira D, Berić T (2017) The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 8:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P et al (2018) An investigation of biocontrol activity Pseudomonas and Bacillus strains against Panax ginseng root rot fungal phytopathogens. Biol Control 125:138–146

    Article  CAS  Google Scholar 

  • El-Gremi SM, Draz IS, Youssef WAE (2017) Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot 91:13–19

    Article  Google Scholar 

  • El-shakh ASA, Kakar KU, Wang X, Almoneafy AA, Ojaghian MR et al (2017) New biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J Microbiol Biotechnol 33:95

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Google Scholar 

  • Eski A, Demir Ä°, Sezen K, Demirbag Z (2017) A new biopesticide from a local bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J Microbiol Biotechnol 33(5):95

    Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Google Scholar 

  • Etesami H, Noori F, Ebadi A, Reiahi Samani N (2020) Alleviation of stress-induced ethylene-mediated negative impact on crop plants by bacterial ACC deaminase: perspectives and applications in stressed agriculture management. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant microbiomes for sustainable agriculture. Sustainable development and biodiversity, vol 25. Springer, Cham, pp 287–315

    Chapter  Google Scholar 

  • Fan Q, Tian SP, Li YX, Xu Y, Wang Y (2000) Biological control of postharvest brown rot in peach and nectarine fruits by Bacillus subtilis (B-912). Acta Bot Sin 42(11):1137–1143

    Google Scholar 

  • Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2009) Available from: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed on 10 May 2020

  • FAO (2020) Available from: http://www.fao.org/india/fao-in-india/india-at-a-glance/en/. Accessed on 2 May 2020

  • Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Biol Control 62(6):821–833

    Google Scholar 

  • Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AMR (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Pathol Microbiol 94. Iowa State University. Available from: https://doi.org/10.1094/PHI-I-2008-0226-01

  • Fu G, Huang SL, Ye YF, Wu YG, Cen ZL, Lin SH (2010) Characterization of a bacterial biocontrol strain B106 and its efficacy in controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55(1):1–10

    Article  Google Scholar 

  • Gajbhiye A, Rai AR, Meshram SU, Dongre AB (2010) Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World J Microbiol Biotechnol 26(7):1187–1194

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D et al (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam S, Sehgal R, Shirkot CK, Chauhan A, Sharma R (2019) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibactermichiganensis ssp. michiganensis. Microb Pathog 130:196–203

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. Hindawi

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36(1):8–14

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1–19

    Google Scholar 

  • Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, et al (2018) Identification and characterization of a new bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea Americana). Microbiol Res 210:26–32

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Tabassum B, Abd-Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Google Scholar 

  • Hassan MN, Afghan S, Hafeez FY (2010) Suppression of red rot caused by Colletotrichum falcatumon sugarcane plants using plant growth-promoting rhizobacteria. Biol Control 55:531–542

    Google Scholar 

  • Hassan MN, Shah SZ-U-H, Afghan S, Hafeez FY (2015) Suppression of red rot disease by Bacillus sp. based biopesticide formulated in non-sterilized sugarcane filter cake. Biol Control 60:691–702

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilusas a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Protect 48(13–16):841–849

    Article  CAS  Google Scholar 

  • Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJP, Pfitzner UM (2013) The Arabidopsis NIMIN proteins affect NPR1 differentially. Front Plant Sci 4:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrnstadt C, Soares G, Wilcox ER, Edward DL (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Nat Biotechnol 4:305–308

    Article  CAS  Google Scholar 

  • Istifadah N, Ningtyas DNY, Suryatmana P, Fitriatin BN (2017) The abilities of endophytic and biofertilizing bacteria and their combinations to suppress bacterial wilt disease (Ralstonia solanacearum) of Chili. In: 2nd international conference on sustainable agriculture and food security: a comprehensive approach (ICSAFS), KnE Life Sciences, pp 296–304

    Google Scholar 

  • Jangir M, Pathak R, Sharma S, Sharma S (2018) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. Lycopersici. Biol Control 123:60–70

    Article  CAS  Google Scholar 

  • Jha A, Sharma D, Saxena J (2012) Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants. Arch Agron Soil Sci 58(9):967–981

    Article  Google Scholar 

  • Jha A, Saxena J, Sharma V (2013) Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt, and pH. Commun Soil Sci Plan 44(16):2443–2458

    Article  CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng C (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65(3):565–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Shi, J, Liu Y, Zhu C (2014) Inhibition of aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis. Food Control 35(1):41–48

    Google Scholar 

  • Kang SM, Radhakrishnan R, Lee IJ (2015) Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 31:1517–1527

    Google Scholar 

  • Keswani C (ed) (2020) Bioeconomy for sustainable development. Available from: https://doi.org/10.1007/978-981-13-9431-7

  • Khan MR, Majid S, Mohidin FA, Khan N (2011) A new bioprocess to produce low cost powder formulations of biocontrol bacteria and fungi to control fusarial wilt and root-knot nematode of pulses. Biol Control 59(2):130–140

    Article  CAS  Google Scholar 

  • Khan N, Martinez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Kipngeno P, Losenge T, Maina N, Kahangi E, Juma P (2015) Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biol Control 90:92–95

    Article  Google Scholar 

  • Kloepper, JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Google Scholar 

  • Krishnan N, Gandhi K, Faisal PM, Muthurajan R, Kuppusamy P, Thiruvengadam R (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28(12):2229–2241

    Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129

    Article  Google Scholar 

  • Lambert B, Höfte H, Annys K, Jansens S, Soetaert P, Peferoen M (1992) Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58(8):2536–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Han LR, Zhang Y, Fu X, Chen X, Zhang L (2013) Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. Plant Pathol J 29(2):168–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu TT, Wu P, Wang LH, Zhou Q (2011) Response of soybean seed germination to cadmium and acid rain. Biol Trace Elem Res 144:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Lyngwi NA, Joshi SR (2014) Economically important Bacillus and related genera: a mini review. In: Sen A (ed) Biology of useful plants and microbes. Narosa Publishing House, New Delhi, pp 33–43

    Google Scholar 

  • Maketon M, Apisitsantikul J, Siriraweekul C (2008) Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz J Microbiol 39(2):296–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050

    Article  PubMed  PubMed Central  Google Scholar 

  • Minaxi, Nain L, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 71–111

    Chapter  Google Scholar 

  • Misra S, Chauhan PS (2020) ACC deaminase-producing rhizosphere competent Bacillus spp mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10:19

    Article  Google Scholar 

  • Moosavi MR, Zare R (2016) Present status and the future prospects of microbial biopesticides in Iran. In: Singh H, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore, pp 293–305

    Chapter  Google Scholar 

  • Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B (2019) Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth. Biol Control 134:23–31

    Article  Google Scholar 

  • Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Hayati J Biosci 18(2):66–70

    Article  Google Scholar 

  • Ni L, Punja ZK (2019) Management of fungal diseases on cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) crops in greenhouses using Bacillus subtilis. In: Islam M, Rahman M, Pandey P, Boehme M, Haesaert G (eds) Bacilli and agrobiotechnology: phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting, vol 2. Springer, Cham, pp 1–28

    Google Scholar 

  • Nie P, Li X, Wang S, Guo J, Zhao H, Niu D (2017) Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent Signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci 8:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Nihorimbere V, Ongena M, Cawoy H, Brostaux Y, Kakana P, Jourdan E, Thonart P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local fusarium disease and growth promotion. Afr J Microbiol Res 4(11):1135–1142

    Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL et al (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16 (3):115–125

    Google Scholar 

  • Phour M, Sindhu SS (2019) Bio-herbicidal effect of 5-aminoleveulinic acid producing rhizobacteria in sup pression of Lathyrus aphaca weed growth. Biol Control 64:221–232

    CAS  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H et al (1998) Plant Cell 10(9):157–180

    Article  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pingping S, Jianchao C, Xiaohui J, Wenhui W (2017) Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot. Hortic Plant J 3(5):183–189

    Article  Google Scholar 

  • Punja ZK, Rodriguez G, Tirajoh A (2016) Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Prot 84:98–104

    Article  CAS  Google Scholar 

  • Qian S, Lu H, Sun J, Zhang C, Zhao H, Lu F, Bie X, Lu Z (2016) Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control 60:281–288

    Article  CAS  Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu LH, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  PubMed  Google Scholar 

  • Rabbee MF, Ali MS, Baek KH (2019) Endophyte Bacillus velezensis isolated from citrus spp. controls streptomycin-resistant Xanthomonas citri subsp. citri that causes citrus bacterial canker. Agronomy 9(8):470

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd-Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyriculariaoryzae. PLoS One 12(11):e0187412

    Google Scholar 

  • Rajendran L, Samiyappan R, Raguchander T, Saravanakumar D (2007) Endophytic bacteria mediate plant resistance against cotton bollworm. J Plant Interact 2(1):1–10

    Article  CAS  Google Scholar 

  • Roberts PD, Momol MT, Ritchie L, Olson SM, Jones JB, Balogh B (2008) Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Prot 27(12):1519–1526

    Article  CAS  Google Scholar 

  • Rocha FYO, de Oliveira CM, da Silva PRA, de Melo LHV, Do Carmo MGF, Baldani JI (2017) Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Appl Soil Ecol 120:8–19

    Article  Google Scholar 

  • Ryu CM, Farag MA, Pare P, Kloepper JW (2005) Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plnt Pthol J 21(1):7–12

    Google Scholar 

  • Sabaté DC, Petroselli G, Erra-Balsells R, Carina Audisio M, Brandan CP (2019) Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biol Control 141:104131

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4(4):519–537

    Article  Google Scholar 

  • Schnep E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol 2014:135675

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Google Scholar 

  • Shang L, Bai X, Chen C, Liu L, Li M, Xia X et al (2019) Isolation and identification of a Bacillus megaterium strain with ochratoxin a removal ability and antifungal activity. Food Control 106(8):106743

    Article  CAS  Google Scholar 

  • Shankar SM (2016) Epidemiology and management of damping-off of tomato (Solanum esculentum L.). Plant Pathology Department of N.M. College of Agriculture, Navsari Agricultural University. Available from: http://krishikosh.egranth.ac.in/handle/1/5810036276

  • Shi QH, Zhu ZJ, Juan L, Qian QQ (2006) Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agric Sci China 5(10):767–772

    Article  CAS  Google Scholar 

  • Siahmoshteh F, Siciliano I, Banani H, Hamidi-Esfahani Z, Razzaghi-Abyaneh M, Gullino ML, Spadaro D (2017) Efficacy of Bacillus subtilis and Bacillusamyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. Int J Food Microbiol 254:47–53

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure. Pest Manag Sci 65(9):943–948

    Article  CAS  PubMed  Google Scholar 

  • Siripornvisal S (2010) Biocontrol efficacy of Bacillus subtilis BCB3-19 against tomato gray mold. Sci Technol J 10:37–44

    Google Scholar 

  • Soleyman G, Masoud A, Siavash T (2014) Biological control of Alternaria rot of tomato by two bacterial strains, Pseudomonas fluorescens UTPF68, and Bacillus subtilis UTB96. Iran J Plant Prot Sci 44:299–305

    Google Scholar 

  • Song M, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38(2):136–145

    Article  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Google Scholar 

  • Suárez-Estrella F, Arcos-Nievas MA, López MJ, Vargas-García MC, Moreno J (2013) Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol Control 67(3):509–515

    Article  Google Scholar 

  • Tan T, Zhu J, Shen A et al (2019) Isolation and identification of a Bacillus subtilis HZ-72 exhibiting biocontrol activity against flax seedling blight. Eur J Plant Pathol 153:825–836

    Article  CAS  Google Scholar 

  • Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289

    Article  CAS  Google Scholar 

  • Tripathi YN et al (2020) Biopesticides: current status and future prospects in India. In: Keswani C (ed) Bioeconomy for sustainable development. Springer, Singapore, pp 79–109

    Chapter  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti RC, Arora NK, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  • Waewthongrak W, Leelasuphakul W, McCollum G (2014) Cyclic lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit. PLoS One 9(10):e109386

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Jin P, Wang J, Jiang L, Zhang S, Gong H et al (2015) In vitro inhibition and in vivo induction of defense response against Penicillium expansum in sweet cherry fruit by postharvest applications of Bacillus cereus AR156. Postharvest Biol Technol 101:15–17

    Article  CAS  Google Scholar 

  • Wang B, Shen Z, Zhang F, Raza W, Yuan J, Huang R, Ruan Y, Li R, Shen Q (2016a) Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere 26(5):733–744

    Google Scholar 

  • Wang Y, Yuan Y, Liu B, Zhang Z, Yue T (2016b) Biocontrol activity and patulin removal effects of Bacillus subtilis, Rhodobactersphaeroides and agrobacterium tumefaciens against Penicilliumexpansum. J Appl Microbiol 121(5):1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shi Y, Wang D, Yao Z, Wang Y, Liu J, Zhang S, Wang A (2018) A biocontrol strain of Bacillus subtilis WXCDD105 used to control tomato Botrytis cinerea and Cladosporium fulvum and promote the growth of seedlings. Int J Mol Sci 19:1371

    Article  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bio-prospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yanti Y, Warnita R, Busniah M (2018) Indigenous endophyte bacteria ability to control Ralstonia and Fusarium wilt disease on chili pepper. Biodiversitas 19(4):1532–1538

    Article  Google Scholar 

  • Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S, Rasul G (2016) Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS One 11:e0160688

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control 63(2):87–97

    Article  Google Scholar 

  • Zalila-Kolsi I, Mahmoud AB, Ali H, Sellami S, Nasfi Z, Tounsi S, Jamoussi K (2016) Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol Res 192:148–158

    Article  PubMed  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporumf. sp. spinaciae. J Basic Microbiol 54(5):448–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chausali, N., Saxena, J. (2022). Role of Bacillus Species in Alleviating Biotic Stress in Crops. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_17

Download citation

Publish with us

Policies and ethics