Skip to main content

Bacillus Probiotics and Bioremediation: An Aquaculture Perspective

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Probiotics confer health benefits to the host, and their application to control infectious diseases in aquaculture is well recognized. Probiotic bacteria exert beneficial effects in fish/shellfish when applied through the feed. Besides the application of probiotics as a feed additive, an additional concept of “water probiotic” is also pertinent in aquaculture, owing to the intricate relationship of aquatic organisms with their surrounding environment. In fact, an extended definition of probiotics has been suggested in aquaculture, incorporating the idea of improving the quality of the ambient aquatic environment by probiotics. Among different bacteria tested as probiotics in aquaculture, Bacillus constitutes the dominant genera. Besides the use of Bacillus as a feed additive to obtain the probiotic effect, administration of this bacterial group in the rearing water has also been investigated to improve water quality. The majority of the studies indicated an effective bioremediation capability of Bacillus spp. in terms of improving water quality. However, in a few studies, Bacillus spp. did not show any effect on all or some of the water quality parameters. This chapter provides an overview of the concept, application, and beneficial effects of Bacillus as a bioremediating probiotic in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  PubMed  Google Scholar 

  • Akinbowale OL, Peng H, Barton MD (2006) Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol 100(5):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Balcázar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    Article  PubMed  Google Scholar 

  • Banerjee S, Khatoon H, Shariff M, Yusoff FM (2010) Enhancement of Penaeus monodon shrimp postlarvae growth and survival without water exchange using marine Bacillus pumilus and periphytic microalgae. Fish Sci 76(3):481–487

    Article  CAS  Google Scholar 

  • Barman P, Bandyopadhyay P, Kati A, Paul T, Mandal AK, Mondal KC, Mohapatra PK (2018) Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management. Waste Biomass Valori 9(8):1319–1330

    Article  CAS  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132(3–4):249–272

    Article  PubMed  Google Scholar 

  • Cha JH, Rahimnejad S, Yang SY, Kim KW, Lee KJ (2013) Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402:50–57

    Article  Google Scholar 

  • Chen C-C, Chen S-N (2001) Water quality management with Bacillus spp. in the high-density culture of red-parrot fish Cichlasoma citrinellum × C. synspilum. N Am J Aquacult 63(1):66–73

    Article  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220

    Google Scholar 

  • Dalmin G, Kathiresan K, Purushothaman A (2001) Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem. Indian J Exp Biol 39:939–942

    CAS  PubMed  Google Scholar 

  • Dash P, Tandel RS, Bhat RA, Mallik S, Pandey NN, Singh AK, Sarma D (2018) The addition of probiotic bacteria to microbial floc: water quality, growth, non-specific immune response and disease resistance of Cyprinus carpio in mid-Himalayan altitude. Aquaculture 495:961–969

    Article  Google Scholar 

  • Dawood MA, Koshio S, Abdel-Daim MM, Doan HV (2019) Probiotic application for sustainable aquaculture. Rev Aquacult 11(3):907–924

    Article  Google Scholar 

  • de Paiva-Maia E, Alves-Modesto G, Otavio-Brito L, Vasconcelos-Gesteira TC, Olivera A (2013) Effect of a commercial probiotic on bacterial and phytoplankton concentration in intensive shrimp farming (Litopenaeus vannamei) recirculation systems. Lat Am J Aquat Res 41(1):126–137

    Article  Google Scholar 

  • Devaraja T, Banerjee S, Yusoff F, Shariff M, Khatoon H (2013) A holistic approach for selection of Bacillus spp. as a bioremediator for shrimp postlarvae culture. Turk J Biol 37(1):92–100

    Google Scholar 

  • Doan HV, Hoseinifar SH, Ringo E, Esteban MA, Dadar M, Dawood MAO, Faggio C (2020) Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci Aquac 28:16–42

    Article  Google Scholar 

  • Elsabagh M, Mohamed R, Moustafa EM, Hamza A, Farrag F, Decamp O, Dawood MAO, Eltholth M (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac Nutr 24(6):1613–1622

    Article  CAS  Google Scholar 

  • FAO/WHO (2001) Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina

    Google Scholar 

  • Foon NG (2004) Effectiveness of Bacillus spp. on ammonia reduction and improvement of water quality in shrimp hatchery. PhD Thesis, Serdang (MY), Universiti Putra Malaysia

    Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378

    Article  CAS  PubMed  Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180(1–2):147–165

    Article  Google Scholar 

  • Gatesoupe FJ (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14(1–3):107–114

    CAS  PubMed  Google Scholar 

  • Ghosh S, Sinha A, Sahu C (2008) Bioaugmentation in the growth and water quality of live bearing ornamental fishes. Aquacult Int 16(5):393–403

    Article  Google Scholar 

  • Gupta A, Gupta P, Dhawan A (2016) Paenibacillus polymyxa as a water additive improved immune response of Cyprinus carpio and disease resistance against Aeromonas hydrophila. Aquacult Rep 4:86–92

    Google Scholar 

  • John EM, Krishnapriya K, Sankar TV (2020) Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture 20:735390

    Article  Google Scholar 

  • Kanamori K, Weiss RL, Roberts JD (1987) Role of glutamate dehydrogenase in ammonia assimilation in nitrogen-fixing Bacillus macerans. J Bacteriol 169(10):4692–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14

    Article  Google Scholar 

  • Khanichaidecha W, Nakaruk A, Ratananikom K, Eamrat R, Kazama F (2019) Heterotrophic nitrification and aerobic denitrification using pure-culture bacteria for wastewater treatment. J Water Reuse Desal 9(1):10–17

    Article  CAS  Google Scholar 

  • Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuebutornye FK, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME (2019) In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile tilapia, Oreochromis niloticus. Prob Antimicrob Prot 17:1–13

    Google Scholar 

  • Lalloo R, Ramchuran S, Ramduth D, Georgens J, Gardiner N (2007) Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. J Appl Microbiol 103:1471–1479

    Article  CAS  PubMed  Google Scholar 

  • Liu XW, Sheng GP, Yu HQ (2009) Physicochemical characteristics of microbial granules. Biotechnol Adv 27(6):1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Matias HB, Yusoff FM, Shariff M, Azhar O (2002) Effects of commercial microbial products on water quality in tropical shrimp culture ponds. Asian Fish Sci 15(3):239–248

    Google Scholar 

  • McIntosh D, Samocha TM, Jones ER, Lawrence AL, McKee DA, Horowitz S, Horowitz A (2000) The effect of a commercial bacterial supplement on the high-density culturing of Litopenaeus vannamei with a low-protein diet in an outdoor tank system and no water exchange. Aquac Eng 21(3):215–227

    Article  Google Scholar 

  • Mevel G, Prieur D (2000) Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions. Can J Microbiol 46:465–473

    Article  CAS  PubMed  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358

    Article  Google Scholar 

  • Moriarty DJW (1999) Disease control in shrimp aquaculture with probiotic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology Halifax, Canada, pp 237–243

    Google Scholar 

  • Moriarty DJ, Body AG (1995) Modifying microbial ecology in ponds: the key to sustainable aquaculture. In: Proceedings of fish Asia’95 conference: 2nd Asian aquaculture and fisheries exhibition and conference. RAI Exhibitions, Singapore, pp 1–10

    Google Scholar 

  • Mujeeb Rahiman KM, Jesmi Y, Thomas AP, Mohamed Hatha AA (2010) Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquac Res 41(9):120–134

    Article  Google Scholar 

  • Muthukrishnan S, Sabaratnam V, Tan GY, Chong VC (2015) Identification of indigenous bacteria isolated from shrimp aquaculture wastewater with bioremediation application: total ammoniacal nitrogen (TAN) and nitrite removal. Sains Malays 44(8):1103–1110

    Article  CAS  Google Scholar 

  • Naderi-Samani M, Jafaryan H, Gholipour H, Harsij M, Farhangi M (2016) Effect of different concentration of profitable Bacillus on bioremediation of common carp (Cyprinus carpio) pond discharge. Iran J Aquat Anim Health 2(2):44–54

    Article  Google Scholar 

  • Nimrat S, Suksawat S, Boonthai T, Vuthiphandchai V (2012) Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet Microbiol 159(3–4):443–450

    Article  PubMed  Google Scholar 

  • Omitoyin BO, Ajani EK, Okeleye OI, Akpoilih AO, Demola EA (2016) Efficiency of toxic substance removal from aquaculture wastewater by duckweed (Lemna minor) and bacteria (Bacillus sp.). Afr J Fish Aquat Resour Manage 1(1):31–40

    Google Scholar 

  • Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria, biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington DC, pp 3–16

    Google Scholar 

  • Prosser JI (2005) Nitrification. In: Hillel D, Hatfield JL (eds) The encyclopedia of soils in the environment, Vol, vol 3. Elsevier, Oxford, UK, pp 31–39

    Chapter  Google Scholar 

  • Queiroz JF, Boyd CE (1998) Effects of a bacterial inoculum in channel catfish ponds. J World Aquacult Soc 29(1):67–73

    Article  Google Scholar 

  • Slepecky R, Hemphill E (2006) The genus Bacillus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Nonmedical. The Prokaryotes, vol 4. Springer, New York, pp 530–562

    Chapter  Google Scholar 

  • Smith VH (1993) Implications of resource-ratio theory for microbial ecology. In: Jones JG (ed) Advances in microbial ecology. Springer, Boston, pp 1–37

    Google Scholar 

  • Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, Ringo E (2019) Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac 27:331–379

    Article  Google Scholar 

  • Sonia V, Rajagopalsamy CBT, Ahilan B, Francis T (2015) Influence of bioremediation on the growth and survival of Cyprinus carpio var Koi using aquaculture waste water. J Ind Pollut Control 31(2):243–248

    CAS  Google Scholar 

  • Takenaka S, Zhou Q, Kuntiya A, Seesuriyachan P, Murakami S, Aoki K (2007) Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions. Biotechnol Lett 29(3):385–390

    Article  CAS  PubMed  Google Scholar 

  • Thurlow CM, Williams MA, Carrias A, Ran C, Newman M, Tweedie J, Allison E, Jescovitch LN, Wilson AE, Terhune JS, Liles MR (2019) Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–356

    Google Scholar 

  • Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD, de Vos WM (2002) The intestinal LABs. In: Siezen RJ, Kok J, Abee T, Schaafsma G (eds) Lactic acid bacteria: genetics, metabolism and applications. Springer, Dordrecht, pp 341–352

    Chapter  Google Scholar 

  • Verschuere L, Dhont J, Sorgeloos P, Verstraete W (1997) Monitoring biolog patterns and r/K-strategists in the intensive culture of Artemia juveniles. J Appl Microbiol 83(5):603–612

    Article  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraete W, Focht DD (1977) Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214

    Article  Google Scholar 

  • Wang YB, Han JZ (2007) The role of probiotic cell wall hydrophobicity in bioremediation of aquaculture. Aquaculture 269(1–4):349–354

    Article  CAS  Google Scholar 

  • Wang YB, Xu ZR, Xia MS (2005) The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish Sci 71(5):1036–1041

    Article  CAS  Google Scholar 

  • Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Evolut Genomic Microbiol 75:981–990

    CAS  Google Scholar 

  • Wu DX, Zhao SM, Peng N, Xu CP, Wang J, Liang YX (2016) Effects of a probiotic (Bacillus subtilis FY99-01) on the bacterial community structure and composition of shrimp (Litopenaeus vannamei, Boone) culture water assessed by denaturing gradient gel electrophoresis and high-throughput sequencing. Aquac Res 47(3):857–869

    Article  CAS  Google Scholar 

  • Xie F, Zhu T, Zhang F, Zhou K, Zhao Y, Li Z (2013) Using bacillus amyloliquefaciens for remediation of aquaculture water. Springerplus 2:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C-H, Wang Y, Guo T, Shen W-X, Gu M-X (2012) Isolation and identification of ammonia nitrogen degradation strains from industrial waste water. Eng Res 4:790–793

    Google Scholar 

  • Zhang X, Fu L, Deng B, Liang Q, Zheng J, Sun J, Zhu H, Peng L, Wang Y, Wenying S, Li W (2013) Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World J Microbiol Biotechnol 29(9):1645–1653

    Google Scholar 

  • Zhu J, Qiu J, Yang J, Fang W, Liu H (2012) Study on a microbial preparation for improving water quality in aquaculture. Fresenius Environ Bull 21(10):2942–2947

    CAS  Google Scholar 

  • Zink IC, Benetti DD, Douillet PA, Margulies D, Scholey VP (2011) Improvement of water chemistry with Bacillus probiotics inclusion during simulated transport of yellowfin tuna yolk sac larvae. N Am J Aquacult 73(1):42–48

    Article  Google Scholar 

  • Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcázar JL (2014) Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 36(1):68–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamilya, D., Devi, W.M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_15

Download citation

Publish with us

Policies and ethics