Skip to main content

Bacillus Species of Ruminant Origin as a Major Potential Sources of Diverse Lipolytic Enzymes for Industrial and Therapeutic Applications

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Lipases are biocatalysts that catalyze a wide range of reactions such as the hydrolysis of triglycerides or lipids and esterification of fatty acids in a nonaqueous medium. This versatility renders lipases to be potential biocatalysts for the food, detergent, paper and pulp, leather and textile industries, biodiesel production, and therapeutic applications. Lipases are naturally sourced from either plants, animals, or microorganisms. Microbial lipases are quite stable, selective, substrate-specific, and, thus, classified as one of the most extensively used industrial enzymes. The rumen is a four-chamber stomach of the ruminant animal representing the fermentation-vat where microorganisms, Bacillus species, work in a symbiotic relationship with the host to digest complex ingested feed. The ruminant microbiome is a relatively less exploited yet potentially rich source of biocatalysts of industrial, environmental, and therapeutic importance. However, no or minimal comprehensive review has been reported on biocatalysts of ruminant origin. Therefore, this review presents an in-depth analysis of biocatalysts of rumen microbiome with particular emphasis on Bacillus spp. of ruminant origin as an untapped source of diverse lipase-isoforms with potential industrial and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguieiras EC, Cavalcanti-Oliveira ED, Freire DM (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67

    Article  CAS  Google Scholar 

  • Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bio Resource Technol 101(10):3628–3634

    Article  CAS  Google Scholar 

  • Ahmia A, Danane F, Bessah R, Boumesbah I (2014) Raw material for biodiesel production. Valorization of used edible oil. Rev Energ Renouv 17(2):335–343

    Google Scholar 

  • Alves Macedo G, Soberón Lozano MM, Pastore GM (2003) Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electron J Biotechnol 6(1):3–4

    Article  Google Scholar 

  • Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications. Biotechnology 11(3):100–118

    Article  CAS  Google Scholar 

  • Aronne A, Bloisi F, Calabria R, Califano V, Depero LE, Fanelli E et al (2015) Lipase biofilm deposited by matrix assisted pulsed laser evaporation technique. Appl Surf Sci 336:196–199

    Article  CAS  Google Scholar 

  • Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1):9–14

    Article  CAS  Google Scholar 

  • Barbosa AM, Messias JM, Andrade MM, Dekker RF, Venkatesagowda B (2011) Soybean oil and meal as substrates for lipase production by Botryosphaeria ribis, and soybean oil to enhance the production of Botryosphaeran by Botryosphaeria rhodina, Soybean – Biochemistry, Chemistry and Physiology, Tzi-Bun Ng, IntechOpen. https://doi.org/10.5772/15623

  • Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18(3):181–187

    CAS  PubMed  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16(9):20774–20840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose A, Keharia H (2013) Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal Agric Biotechnol 2(3):255–266

    Article  Google Scholar 

  • Califano V, Bloisi F, Aronne A, Federici S, Nasti L, Depero LE et al (2014) Biosensor applications of MAPLE deposited lipase. Biosensors 4(4):329–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A (2012) Lipases: an overview. Springer, Lipases and phospholipases, pp 3–30

    Book  Google Scholar 

  • Chaplin J, Gardiner N, Mitra R, Parkinson C, Portwig M, Mboniswa B, et al (2004) Process for preparing (−)-menthol and similar compounds. Google Patents

    Google Scholar 

  • Chauhan M, Chauhan RS, Garlapati VK (2013) Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. BioMed research international. 2013

    Google Scholar 

  • Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y et al (2012) A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. J Agric Food Chem 60(10):2546–2553

    Article  CAS  PubMed  Google Scholar 

  • Choudhury PK, Salem AZM, Jena R, Kumar S, Singh R, Puniya AK (2015) Rumen microbiology: an overview. Rumen microbiology: from evolution to revolution, pp 3–16

    Google Scholar 

  • Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sust Energ Rev 15(9):4378–4399

    Article  CAS  Google Scholar 

  • Eggert T, Brockmeier U, Dröge MJ, Quax WJ, Jaeger K-E (2003) Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol Lett 225(2):319–324

    Google Scholar 

  • Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele H et al (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72(5):3637–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. In: Lipases and phospholipases. Springer, pp 471–483

    Chapter  Google Scholar 

  • Faoro H, Glogauer A, Couto GH, de Souza EM, Rigo LU, Cruz LM et al (2012) Characterization of a new Acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiol Ecol 81(2):386–394

    Article  CAS  PubMed  Google Scholar 

  • Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886

    Article  CAS  PubMed  Google Scholar 

  • Ghaly A, Dave D, Brooks M, Budge S (2010) Production of biodiesel by enzymatic transesterification. Am J Biochem Biotechnol 6(2):54–76

    Article  CAS  Google Scholar 

  • Ghanem EH, Al-Sayed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16(5):459–464

    Article  CAS  Google Scholar 

  • Grabner GF, Zimmermann R, Schicho R, Taschler U (2017) Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 175:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grbavčić S, Bezbradica D, Izrael-Živković L, Avramović N, Milosavić N, Karadžić I et al (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour Technol 102(24):11226–11233

    Article  PubMed  Google Scholar 

  • Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68(1):1–21

    Article  CAS  Google Scholar 

  • Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54

    Article  CAS  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:1–18. https://doi.org/10.1155/2013/329121

    Article  CAS  Google Scholar 

  • Haki G, Rakshit S (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  PubMed  Google Scholar 

  • Hasan N, Nawahwi M, Yahya N, Othman N (2018) Identification and optimization of lipase producing bacteria from palm oil contaminated waste. J Fundament Appl Sci 10(2S):li300–li310

    Google Scholar 

  • Hernández-Fernández FJ, de los Ríos AP, Lozano-Blanco LJ, Godínez C (2010) Biocatalytic ester synthesis in ionic liquid media. J Chem Technol Biotechnol 85(11):1423–1435

    Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467

    Article  CAS  PubMed  Google Scholar 

  • Hudlicky T, Reed JW (2009) Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev 38(11):3117–3132

    Article  CAS  PubMed  Google Scholar 

  • Hungate R (1966) The rumen and its microbes. Academic, New York/London

    Google Scholar 

  • Ishaq SL, Kim CJ, Reis D, Wright AD (2015) Fibrolytic bacteria isolated from the Rumen of North American Moose (Alces alces) and their use as a probiotic in neonatal lambs. PLoS One 10(12):e0144804

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2(3):185–190

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15(1):29–63

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K, Dijkstra B, Reetz M (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann Rev Microbiol 53(1):315–351

    Article  CAS  Google Scholar 

  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34

    Article  CAS  PubMed  Google Scholar 

  • Jeong S-T, Kim H-K, Kim S-J, Chi S-W, Pan J-G, Oh T-K et al (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277(19):17041–17.57

    Article  CAS  PubMed  Google Scholar 

  • Kanjanavas P, Khuchareontaworn S, Khawsak P, Pakpitcharoen A, Pothivejkul K, Santiwatanakul S et al (2010) Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant bacillus sp. RN2. Int J Mol Sci 11(10):3783–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47(4):555–569

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. Biotechnol Biotransform I:36–191

    Google Scholar 

  • Kitaura S, Suzuki K, Imamura S (2001) Monoacylglycerol lipase from moderately thermophilic bacillus sp. strain H-257: molecular cloning, sequencing, and expression in Escherichia coli of the gene. J Biochem 129(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Laachari F, El Bergadi F, Sayari A, Elabed S, Mohammed I, Harchali EH et al (2015) Biochemical characterization of a new thermostable lipase from Bacillus pumilus strain/Bacillus pumilus suşundan elde edilen yeni termostabil lipazın biyokimyasal karakterizasyonu. Turkish J Biochem 40(1):8–14

    Article  Google Scholar 

  • Leow TC, Rahman RNZRA, Basri M, Salleh AB (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 11(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Litantra R, Lobionda S, Yim JH, Kim HK (2013) Expression and biochemical characterization of cold-adapted lipases from Antarctic Bacillus pumilus strains. J Microbiol Biotechnol 23(9):1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang J, Bu D, Zhao S, McSweeney C, Yu P et al (2009) Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 385(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • López-López O, Cerdan ME, Gonzalez Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Prot Peptide Sci 15(5):445–455

    Article  Google Scholar 

  • Lukovic N, Knežević-Jugović Z, Bezbradica D (2011) Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives. Alternative fuel: Intech

    Google Scholar 

  • Magalhaes SS, Alves L, Sebastiao M, Medronho B, Almeida ZL, Faria TQ et al (2016) Effect of ethyleneoxide groups of anionic surfactants on lipase activity. Biotechnol Prog 32(5):1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Kaneichi K, Aminov RI, Kobayashi Y, Sakka K, Hoshino S et al (1995) Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen microcosm. Appl Environ Microbiol 61(5):2030–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan S (2012) New tools for exploring “old friends—microbial lipases”. Appl Biochem Biotechnol 168(5):1163–1196

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Snape J, Khare S, Gupta M (2000) Method in non-aqueous enzymology. In: Gupta MN (ed) Biochemistry. Birkhauser Verlag, Basel, pp 52–69

    Google Scholar 

  • Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70

    Article  CAS  Google Scholar 

  • Ouyang L-M, Liu J-Y, Qiao M, Xu J-H (2013) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Biochem Biotechnol 169(1):15–28

    Article  CAS  PubMed  Google Scholar 

  • Oyeleke S, Okusanmi T (2008) Isolation and characterization of cellulose hydrolysing microorganism from the rumen of ruminants. Afr J Biotechnol 7(10)

    Google Scholar 

  • Pabai F, Kermasha S, Morin A (1995) Lipase from Pseudomonas fragi CRDA 323: partial purification, characterization and interesterification of butter fat. Appl Microbiol Biotechnol 43(1):42–51

    Article  CAS  PubMed  Google Scholar 

  • Patil KJ, Chopda MZ, Mahajan RT (2011) Lipase biodiversity. Indian J Sci Technol 4(8):971–982

    Article  CAS  Google Scholar 

  • Phuah E-T, Tang T-K, Lee Y-Y, Choong TS-Y, Tan C-P, Lai O-M (2015) Review on the current state of diacylglycerol production using enzymatic approach. Food Bioprocess Technol 8(6):1169–1186

    Article  Google Scholar 

  • Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Rashid FAA, Rahim RA, Ibrahim D, Balan A, Bakar NMA (2013) Purification and properties of thermostable lipase from a Thermophilic bacterium, Bacillus licheniformis IBRL-CHS2. J Pure Appl Microbiol 7:1635–1645

    CAS  Google Scholar 

  • Ray A (2012) Application of lipase in industry. Asian J Pharm Technol 2(2):33–37

    Google Scholar 

  • Rhee J-K, Ahn D-G, Kim Y-G, Oh J-W (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro BD, AMD C, MAZ C, DMG F (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res 2011:2011

    Article  Google Scholar 

  • Robinson KP (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41. https://doi.org/10.1042/BSE0590001

    Article  PubMed  PubMed Central  Google Scholar 

  • Romdhane IB-B, Fendri A, Gargouri Y, Gargouri A, Belghith H (2010) A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochem Eng J 53(1):112–120

    Article  Google Scholar 

  • Rowe HD (1999) Biotechnology in the textile/clothing industry–a review. J Consumer Stud Home Econom 23(1):53–61

    Article  Google Scholar 

  • Salis A, Bhattacharyya MS, Monduzzi M, Solinas V (2009) Role of the support surface on the loading and the activity of Pseudomonas fluorescens lipase used for biodiesel synthesis. J Mol Catal B Enzym 57(1-4):262–269

    Article  CAS  Google Scholar 

  • Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA et al (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45(8):1348–1354

    Article  CAS  Google Scholar 

  • Sangeetha R, Arulpandi I, Geetha A (2011) Bacterial lipases as potential industrial biocatalysts: an overview. Res J Microbiol 6(1):1–24

    Article  CAS  Google Scholar 

  • Sarkar S, Chatterji A (2018) Characterization of lipase-producing bacteria isolated from degrading oil cakes. Utilization and management of bioresources. Springer, pp 253–260

    Google Scholar 

  • Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V et al (2018) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 34(1):5–28

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kanwar SS, Dogra P, Chauhan GS (2015) Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of bacillus licheniformis SCD 11501. Biotechnol Prog 31(3):715–723

    Article  CAS  PubMed  Google Scholar 

  • Solanki S, Pandey CM, Soni A, Sumana G, Biradar AM (2016) An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. Microchim Acta 183(1):167–176

    Article  CAS  Google Scholar 

  • Su E, Xu J, You P (2014) Functional expression of Serratia marcescens H30 lipase in Escherichia coli for efficient kinetic resolution of racemic alcohols in organic solvents. J Mol Catal B Enzym 106:11–16

    Article  CAS  Google Scholar 

  • Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z et al (2015) A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol 31(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Thakur S (2012) Lipases, its sources, properties and applications: a review. Int J Sci Eng Res 3(7):1–29

    Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22(4):181–188

    Article  CAS  PubMed  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3(2):182–196

    Article  CAS  Google Scholar 

  • Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterification of palm oil midfraction. Process Biochem 36(10):933–939

    Article  CAS  Google Scholar 

  • Van Pouderoyen G, Eggert T, Jaeger K-E, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme1. J Mol Biol 309(1):215–226

    Article  PubMed  Google Scholar 

  • Vaquero ME, Barriuso J, Martínez MJ, Prieto A (2016) Properties, structure, and applications of microbial sterol esterases. Appl Microbiol Biotechnol 100(5):2047–2061

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Srivastava KC, Shen G-J, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79(5):433–438

    Article  CAS  Google Scholar 

  • Wang H, Klein MG, Snell G, Lane W, Zou H, Levin I et al (2016) Structure of human GIVD cytosolic phospholipase A2 reveals insights into substrate recognition. J Mol Biol 428(13):2769–2779

    Article  CAS  PubMed  Google Scholar 

  • Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43(7):993–999

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Zhang B, Seviour EG, K-x T, X-h L, Ling Y et al (2011) Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett 307(1):6–17

    Article  CAS  PubMed  Google Scholar 

  • Zehani N, Kherrat R, Dzyadevych SV, Jaffrezic-Renault N (2015) A microconductometric biosensor based on lipase extracted from Candida rugosa for direct and rapid detection of organophosphate pesticides. Int J Environ Anal Chem 95(5):466–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Aliye Feto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukendi, G.M., Mitema, A., Nelson, K., Feto, N.A. (2022). Bacillus Species of Ruminant Origin as a Major Potential Sources of Diverse Lipolytic Enzymes for Industrial and Therapeutic Applications. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_12

Download citation

Publish with us

Policies and ethics