Abstract
We first derive a local duality theory for constrained nonconvex optimization, which is based on our earlier global duality theory and the Lagrangian relaxations. The variables of the local dual are again the Lagrange multipliers associated with the constraints in the primal problem—the original constrained optimization problem but restricted in the neighborhood of a primal solution under consideration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
D.P. Bertsekas, Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)
D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic, New York, 1982)
D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1995)
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)
C.H. Chen, B.S. He, Y.Y. Ye, X.M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155, 57–79 (2016). https://doi.org/10.1007/s10107-014-0826-5
C Chen, M Li, X Liu, Y Ye, Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms: convergence analysis and insights. Math. Program. 173(1–2), 37–77 (2019)
B.C. Eaves, W.I. Zangwill, Generalized cutting plane algorithms. Working Paper No. 274, Center for Research in Management Science, University of California, Berkeley (July 1969)
J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
H. Everett III, Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11, 399–417 (1963)
M. Fortin, R. Glowinski, On decomposition-coordination methods using an augmented Lagrangian, in Augmented Lagrangian Methods: Applications to the Solution of Boundary Problems, ed. by M. Fortin, R. Glowinski (North- Holland, Amsterdam, 1983)
D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)
R. Glowinski, A. Marrocco, Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires. R.A.I.R.O. R2 2, 41–76 (1975)
B.S. He, X.M. Yuan, On the O(1∕n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
M.R. Hestenes, Multiplier and gradient methods. J. Opt. Theory Appl. 4(5), 303–320 (1969)
J.E. Kelley, The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. VIII(4), 703–712 (1960)
D.G. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1969)
D.G. Luenberger, Introduction to Linear and Nonlinear Programming, 1st edn. (Addison-Wesley, Reading, 1973)
R.D.C. Monteiro, B.F. Svaiter, Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)
M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, ed. by R. Fletcher Powell (Academic, London, 1969), pp. 283–298
M.J.D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program. 14, 224–248 (1978)
R.T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)
R. Sun, Z. Luo, Y. Ye, On the efficiency of random permutation for ADMM and coordinate descent. Math. Oper. Res. 45(1), 233–271 (2019)
D. Sun, K.-C. Toh, L. Yang, A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015)
D.M. Topkis, A note on cutting-plane methods without nested constraint sets. ORC 69-36, Operations Research Center, College of Engineering, Berkeley, December 1969
A.F. Veinott, Jr., The supporting hyperplane method for unimodal programming. Oper. Res. XV(1), 147–152 (1967)
P. Wolfe, Convergence theory in nonlinear programming (Chap. 1), in Integer and Nonlinear Programming, ed. by J. Abadie (North-Holland Publishing Company, Amsterdam, 1970)
W.I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood Cliffs, 1969)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Luenberger, D.G., Ye, Y. (2021). Local Duality and Dual Methods. In: Linear and Nonlinear Programming. International Series in Operations Research & Management Science, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-85450-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-85450-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85449-2
Online ISBN: 978-3-030-85450-8
eBook Packages: Business and ManagementBusiness and Management (R0)