Chuprunov, M.: Auditing and GRC Automation in SAP. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-35302-4
CrossRef
Google Scholar
Seeliger, A., Nolle, T., Mühlhäuser, M.: Process explorer: an interactive visual recommendation system for process mining. In: KDD Workshop on Interactive Data Exploration and Analytics (2018)
Google Scholar
Fricker, R.D.: Sampling methods for web and e-mail surveys. In: Fielding, N., Lee, R.M., Blank G. (eds.) The Sage Handbook of Online Research Methods, pp. 195–216. Los Angeles, CA: Sage (2008)
Google Scholar
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4
CrossRef
Google Scholar
Lu, X., Tabatabaei, S.A., Hoogendoorn, M., Reijers, H.A.: Trace clustering on very large event data in healthcare using frequent sequence patterns. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 198–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_14
CrossRef
Google Scholar
Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1. pp. 1–5 (2013)
Google Scholar
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Amsterdam (August 2000)
Google Scholar
Rajaraman, A., Ullman, J.: Mining of Massive Data Sets. Cambridge University Press, Cambridge (2011)
CrossRef
Google Scholar
Carmona, J., Cortadella, J.: Process mining meets abstract interpretation. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 184–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_18
CrossRef
Google Scholar
Berti, A.: Statistical sampling in process mining discovery. In: The 9th International Conference on Information, Process, and Knowledge Management, pp 41–43 (2017)
Google Scholar
Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is enough? a statistical framework for process discovery. In: CAiSE, pp. 239–256 (2018)
Google Scholar
Fani Sani, F., van Zelst, S.J., van der Aalst, W.M.P.: Improving the performance of process discovery algorithms by instance selection. Comput. Sci. Inf. Syst. 17(3), 927–958 (2020)
CrossRef
Google Scholar
Fani Sani, F., van Zelst, S.J., van der Aalst, W.M.P.: The impact of biased sampling of event logs on the performance of process discovery. In: Computing (2021)
Google Scholar
Bauer, M., van der Aa, H., Weidlich, M.: Estimating process conformance by trace sampling and result approximation. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 179–197. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_13
CrossRef
Google Scholar