Skip to main content

Classifying and Detecting Task Executions and Routines in Processes Using Event Graphs

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 427)

Abstract

Business process management organizes work into several interrelated “units of work”, fundamentally conceptualized as a task. The classical concept of a task as a single step executed by a single actor in a single case fails to capture more complex aspects of work that occur in real-life processes. For instance, actors working together or the processing of work in batches, where multiple actors and/or cases meet for a number of steps. Established process mining and modeling techniques lack concepts for dealing with these more complex manifestations of work. We leverage event graphs as a data structure to model behavior along the actor and the case perspective in an integrated model, revealing a variety of fundamentally different types of task executions. We contribute a novel taxonomy and interpretation of these task execution patterns as well as techniques for detecting these in event graphs, complementing recent research in identifying patterns of work and their changes in routine dynamics. Our evaluation on two real-life event logs shows that these non-classical task execution patterns not only exist, but make up for the larger share of events in a process and reveal changes in how actors do their work.

Keywords

  • Task execution patterns
  • Routines
  • Event graphs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85440-9_13
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-85440-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1

  2. Becker, M.C.: Organizational routines: a review of the literature. Ind. Corp. Change 13(4), 643–678 (2004)

    CrossRef  Google Scholar 

  3. Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs, Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2018)

    MATH  Google Scholar 

  4. Debois, S., López, H.A., Slaats, T., Andaloussi, A.A., Hildebrandt, T.T.: Chain of events: modular process models for the law. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 368–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2_20

    CrossRef  Google Scholar 

  5. Delcoucq, L., Lecron, F., Fortemps, P., van der Aalst, W.M.P.: Resource-centric process mining: clustering using local process models. In: SAC, pp. 45–52. ACM (2020)

    Google Scholar 

  6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Repairing event logs with missing events to support performance analysis of systems with shared resources. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 239–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_12

    CrossRef  Google Scholar 

  7. van Dongen, B.F.: BPI Challenge 2014. Dataset (2014). https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

  8. van Dongen, B.F.: BPI Challenge 2017. Dataset (2017). https://doi.org/10.4121/12705737.v2

  9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Process monitoring. In: Fundamentals of Business Process Management, pp. 413–473. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4_11

    CrossRef  Google Scholar 

  10. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10, 109–141 (2021)

    CrossRef  Google Scholar 

  11. Fahland, D.: Describing behavior of processes with many-to-many interactions. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

    CrossRef  Google Scholar 

  12. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and formalization of instance-spanning constraints in process-driven applications. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 348–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_20

    CrossRef  Google Scholar 

  13. Gall, M., Rinderle-Ma, S.: Visual modeling of instance-spanning constraints in process-aware information systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 597–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_37

    CrossRef  Google Scholar 

  14. Goh, K., Pentland, B.: From actions to paths to patterning: toward a dynamic theory of patterning in routines. Acad. Manage. J. 62, 1901–1929 (2019)

    CrossRef  Google Scholar 

  15. Klijn, E.L., Mannhardt, F., Fahland, D.: Classifying and detecting task executions and routines in processes using event graphs. Extended version of conference article, Zenodo (2021). https://doi.org/10.5281/zenodo.5091611

  16. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. BISE 63(3), 301–314 (2020)

    Google Scholar 

  17. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability calendars of a process from an event log. Inf. Syst. 88, 101463 (2020)

    Google Scholar 

  18. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event logs. Inf. Syst. 95, 101642 (2021)

    CrossRef  Google Scholar 

  19. Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving batch organisation of work insights from event logs. Decis. Support Syst. 100, 119–128 (2017)

    CrossRef  Google Scholar 

  20. Pentland, B., Feldman, M.: Narrative networks: patterns of technology and organization. Organ. Sci. 18, 781–795 (2007)

    CrossRef  Google Scholar 

  21. Pentland, B., Feldman, M., Becker, M., Liu, P.: Dynamics of organizational routines: a generative model. J. Manage. Stud. 49, 1484–1508 (2012)

    CrossRef  Google Scholar 

  22. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst. 8(1), 1–30 (2017)

    CrossRef  Google Scholar 

  23. Pufahl, L., Weske, M.: Batch activity: enhancing business process modeling and enactment with batch processing. Computing 101(12), 1909–1933 (2019)

    MathSciNet  CrossRef  Google Scholar 

  24. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855_16

    CrossRef  Google Scholar 

  25. Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling, J.: Mining resource assignments and teamwork compositions from process logs. Softwaretechnik-Trends 36(4), 1–6 (2016)

    Google Scholar 

  26. Senderovich, A., et al.: Data-driven performance analysis of scheduled processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 35–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_3

    CrossRef  Google Scholar 

  27. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)

    CrossRef  Google Scholar 

  28. Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering instance and process spanning constraints from process execution logs. Inf. Syst. 89, 101484 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L. Klijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Klijn, E.L., Mannhardt, F., Fahland, D. (2021). Classifying and Detecting Task Executions and Routines in Processes Using Event Graphs. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management Forum. BPM 2021. Lecture Notes in Business Information Processing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-030-85440-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85440-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85439-3

  • Online ISBN: 978-3-030-85440-9

  • eBook Packages: Computer ScienceComputer Science (R0)