Skip to main content

Antiviral Innate Immune Responses: Infectious Pancreatic Necrosis Virus and Salmonid Alphavirus

  • Chapter
  • First Online:
  • 1622 Accesses

Abstract

Infectious pancreatic necrosis virus (IPNV) and salmonid alphavirus (SAV) are important viral infections of salmonid fish. The impact and losses due to IPNV infection have been significantly reduced in Atlantic salmon through genetic selection for resistance, but infection with SAV in salmonid aquaculture causes major loss to the industry. Vaccination has been developed to reduce the impact of both diseases but with limited success so far. The innate immune responses are the first line of defense against infection and play crucial roles in directing adaptive immune responses. This chapter addresses the innate immune responses to IPNV and SAV infections in vitro and in vivo and summarizes the current knowledge. Understanding the detailed aspects of the innate host-virus interaction is crucial for developing prophylactic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGK:

Asian grouper strain K cells

Aim2:

Absent in melanoma 2

ALRs:

Aim2-like receptors

ASC:

Apoptosis-associated speck-like protein containing a CARD

ATP:

Adenosine triphosphate

CARD:

Caspase activation and recruitment domain

CPE:

Cytopathogenic effect

DAI:

DNA-dependent activator of IRFs

DIP:

Defective interfering particles

DISC:

Death-inducing signaling complex

DNA:

Deoxyribonucleic acid

DVG:

Defective viral genomes

dsDNA:

Double-stranded DNA

dsRNA:

Double-stranded RNA

eIF:

Eukaryotic initiation factor

ER:

Endoplasmic reticulum

FADD:

Fas/Apo-1-associated death domain protein

GCN2:

General control non-depressible 2

HRI:

Heme-regulated inhibitor

IFN:

Interferon

IkB:

Inhibitor of NFkB

IKK:

IkB kinase

IL-1:

Interleukin-1

IPN:

infectious pancreatic necrosis

IPS-1:

IFNB-promoter stimulator 1

IRAK:

IL-1 receptor-associated kinase

IRF:

Interferon regulatory factor

JNK:

JUN N-terminal kinase

LGP2:

Laboratory of genetics and physiology 2

LRR:

Leucine-rich repeats

MAPK:

Mitogen-activated protein kinase

MAPKK:

MAPK kinase

MDA5:

Melanoma differentiation-associated gene 5

MOI:

Multiplicity of infection

MyD88:

Myeloid differentiation factor 88

Mx:

Myxovirus resistance protein

NFkB:

Nuclear factor-κB

NLR:

Nod-like receptor, nucleotide-binding domain LRR-containing family

NOD:

Nucleotide-binding oligomerization domain

OAS:

Oligoadenylate synthase

ORF:

Open reading frame

PACT:

PKR activating protein

PAMP:

Pathogen-associated molecular pattern

PERK:

PKR-like endoplasmic reticulum kinase

PKR:

dsRNA-activated protein kinase R

PI:

Propidium iodide

Poly I:C:

Polyinosinic-polycytidylic acid

PRR:

Pattern recognition receptor

PS:

Phosphatidylserines

RD:

Repressor domain

RIG-I:

Retinoic acid-inducible gene I

RIP:

Receptor-interacting protein

RLR:

RIG-1-like receptor

RNA:

Ribonucleic acid

RTG:

Rainbow trout gonads cells

TAB1/TAB2:

Tak-binding proteins

TAK1:

TGF-b-activated kinase

TANK:

TRAF-family-member-associated NFkB activator

TBK:

TANK-binding kinase

TCID:

Tissue culture infective dose

TIR:

Toll/IL-1 receptor

TLR:

Toll-like receptor

TIRAP:

TIR domain-containing adaptor protein, a.k.a. MAL (MyD88 adaptor like)

TNF:

Tumor necrosis factor

TRAF:

TNF-receptor-associated factor

TRAM:

TRIF-related adaptor molecule

TRIF:

TIR-domain-containing adaptor protein inducing IFNβ

uORF:

Upstream ORF

UPR:

Unfolded protein response

VP:

Virus protein

ZBP:

Z-DNA-binding protein

References

  • Aguilar PV, Paessler S, Carrara AS, Baron S, Poast J, Wang E, Moncayo AC, Anishchenko M, Watts D, Tesh RB, Weaver SC (2005) Variation in interferon sensitivity and induction among strains of eastern equine encephalitis virus. J Virol 79:11300–11310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  • Altmann SM, Mellon MT, Distel DL, Kim CH (2003) Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio. J Virol 77:1992–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen R, Woldemariam NT, Egeland IO, Agafonov O, Sindre H, Hoyheim B (2017) Identification of differentially expressed Atlantic salmon miRNAs responding to salmonid alphavirus (SAV) infection. BMC Genomics 18:349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barber GN (2005) The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ 12:563–570

    Article  CAS  PubMed  Google Scholar 

  • Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J, Kohl A, Fazakerley JK (2009) PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J Gen Virol 90:1382–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bela-Ong DB, Greiner-Tollersrud L, Andreas Van Der Wal Y, Jensen I, Seternes OM, Jorgensen JB (2020) Infection and microbial molecular motifs modulate transcription of the interferon-inducible gene ifit5 in a teleost fish. Dev Comp Immunol 111:103746

    Article  CAS  PubMed  Google Scholar 

  • Biacchesi S, Leberre M, Lamoureux A, Louise Y, Lauret E, Boudinot P, Bremont M (2009) Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. J Virol 83:7815–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke CW, Gardner CL, Steffan JJ, Ryman KD, Klimstra WB (2009) Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology 395:121–132

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Nie P, Collet B, Secombes CJ, Zou J (2009) Identification of an additional two-cysteine containing type I interferon in rainbow trout Oncorhynchus mykiss provides evidence of a major gene duplication event within this gene family in teleosts. Immunogenetics 61:315–325

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Collet B, Nie P, Lester K, Campbell S, Secombes CJ, Zou J (2011) Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). J Virol 85:8403–8412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves-Pozo E, Zou J, Secombes CJ, Cuesta A, Tafalla C (2010) The rainbow trout (Oncorhynchus mykiss) interferon response in the ovary. Mol Immunol 47:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Chen YM, Su YL, Shie PS, Huang SL, Yang HL, Chen TY (2008) Grouper Mx confers resistance to nodavirus and interacts with coat protein. Dev Comp Immunol 32:825–836

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Evensen Ø, Mutoloki S (2014) Delayed protein shut down and cytopathic changes lead to high yields of infectious pancreatic necrosis virus cultured in Asian Grouper cells. J Virol Methods 195:228–235

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1975) Ribonucleic-acid polymerase-activity in purified infectious pancreatic necrosis virus of Trout. Biochem Biophys Res Commun 62:689–695

    Article  CAS  PubMed  Google Scholar 

  • Collet B, Munro ES, Gahlawat S, Acosta F, Garcia J, Roemelt C, Zou J, Secombes CJ, Ellis AE (2007) Infectious pancreatic necrosis virus suppresses type I interferon signalling in rainbow trout gonad cell line but not in Atlantic salmon macrophages. Fish Shellfish Immunol 22:44–56

    Article  CAS  PubMed  Google Scholar 

  • Collet B, Ganne G, Bird S, Collins CM (2009) Isolation and expression profile of a gene encoding for the Signal Transducer and Activator of Transcription STAT2 in Atlantic salmon (Salmo salar). Dev Comp Immunol 33:821–829

    Article  CAS  PubMed  Google Scholar 

  • Davis NL, Fuller FJ, Dougherty WG, Olmsted RA, Johnston RE (1986) A single nucleotide change in the E2-glycoprotein gene of sindbis virus affects penetration rate in cell-culture and virulence in neonatal mice. Proc Nat Acad Sci USA 83:6771–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Monte S, Castro F, Bonilla NJ, De Gaskin UA, Hutchins GM (1985) The systemic pathology of Venezuelan equine encephalitis virus infection in humans. Am J Trop Med Hyg 34:194–202

    Article  PubMed  Google Scholar 

  • De Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920

    PubMed  Google Scholar 

  • Delmas B, Mundt E, Vakharia VN, Wu JL (2012) Family—Birnaviridae. In: KING AMQ, ADAMS MJ, CARSTENS EB, LEFKOWITZ EJ (eds) Virus taxonomy. Elsevier, San Diego

    Google Scholar 

  • Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 95:15623–15628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobos P (1995) The molecular biology of infectious pancreatic necrosis virus (IPNV). Annu Rev Fish Dis 5:25–54

    Article  Google Scholar 

  • Duncan R, Dobos P (1986) The nucleotide sequence of infectious pancreatic necrosis virus (IPNV) dsRNA segment A reveals one large ORF encoding a precursor polyprotein. Nucleic Acids Res 14:5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan R, Nagy, E, Krell, PJ & Dobos, P (1987) Synthesis of the infectious pancreatic necrosis virus polyprotein, detection of A virus-encoded protease, and fine-structure mapping of genome segment-A coding regions. J Virol 61:3655–3664.

    Google Scholar 

  • Duncan R, Mason CL, Nagy E, Leong JA, Dobos P (1991) Sequence-analysis of infectious pancreatic necrosis virus genome segment-B and its encoded VP1 protein—a putative RNA-dependent RNA-polymerase lacking the Gly Asp Asp motif. Virology 181:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    Article  CAS  PubMed  Google Scholar 

  • Espinoza JC, Cortes-Gutierrez M, Kuznar J (2005) Necrosis of infectious pancreatic necrosis virus (IPNV) infected cells rarely is preceded by apoptosis. Virus Res 109:133–138

    Article  CAS  PubMed  Google Scholar 

  • Ferguson HW, Roberts RJ, Richards RH, Collins RO, Rice DA (1986) Severe degenerative cardiomyopathy associated with pancreas disease in Atlantic salmon, salmo-salar l. J Fish Dis 9:95–98

    Article  Google Scholar 

  • Frantsi C, Savan M (1971) Infectious pancreatic necrosis virus—temperature and age factors in mortality. J Wildl Dis 7:249–255

    Article  PubMed  Google Scholar 

  • Fringuelli E, Rowley HM, Wilson JC, Hunter R, Rodger H, Graham DA (2008) Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. J Fish Dis 31:811–823

    Article  CAS  PubMed  Google Scholar 

  • Frolov I, Akhrymuk M, Akhrymuk I, Atasheva S, Frolova EI (2012) Early events in alphavirus replication determine the outcome of infection. J Virol 86:5055–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller FJ, Marcus PI (1980) Interferon induction by viruses. IV. Sindbis virus: early passage defective-interfering particles induce interferon. J Gen Virol 48:63–73

    Article  CAS  PubMed  Google Scholar 

  • Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920

    Article  CAS  PubMed  Google Scholar 

  • Gadan K, Sandtro A, Marjara IS, Santi N, Munangandu HM, Evensen O (2013) Stress-induced reversion to virulence of infectious pancreatic necrosis virus in naive fry of Atlantic salmon (Salmo salar L.). PLoS One 8:e54656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher MD, Karlsen M, Petterson E, Haugland Ø, Matejusova I, Macqueen DJ (2020) Genome sequencing of SAV3 reveals repeated seeding events of viral strains in Norwegian aquaculture. Front Microbiol 11:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamil AA, Evensen O, Mutoloki S (2015) Infection profiles of selected aquabirnavirus isolates in CHSE cells. PLoS One 10:e0134173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamil AA, Xu C, Mutoloki S, Evensen O (2016) PKR activation favors infectious pancreatic necrosis virus replication in infected cells. Viruses 8:173

    Article  PubMed Central  CAS  Google Scholar 

  • Gamil AA, Gadan K, Gislefoss E, Evensen O (2020) Sea lice (Lepeophtheirus salmonis) infestation reduces the ability of peripheral blood monocytic cells (PBMCs) to respond to and control replication of salmonid alphavirus in Atlantic salmon (Salmo salar L.). Viruses 12:1450

    Article  CAS  PubMed Central  Google Scholar 

  • Garcia MA, Meurs EF, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799–811

    Article  CAS  PubMed  Google Scholar 

  • Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E, Frolov I (2007) The old world and new world alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol 81:2472–2484

    Article  CAS  PubMed  Google Scholar 

  • Grieder FB, Vogel SN (1999) Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 257:106–118

    Article  CAS  PubMed  Google Scholar 

  • Griffin DE (1989) Molecular pathogenesis of Sindbis virus encephalitis in experimental animals. Adv Virus Res 36:255–271

    Article  CAS  PubMed  Google Scholar 

  • Guo TC, Johansson DX, Haugland O, Liljestrom P, Evensen O (2014) A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 9:e100184

    Article  PubMed  PubMed Central  Google Scholar 

  • Haller O, Staeheli P, Kochs G (2007) Interferon-induced Mx proteins in antiviral host defense. Biochimie 89:812–818

    Article  CAS  PubMed  Google Scholar 

  • Heppell J, Tarrab E, Berthiaume L, Lecomte J, Arella M (1995) Characterization of the small open reading frame on genome segment-A of infectious pancreatic necrosis virus. J Gen Virol 76:2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Herath TK, Bron JE, Thompson KD, Taggart JB, Adams A, Ireland JH, Richards RH (2012) Transcriptomic analysis of the host response to early stage salmonid alphavirus (SAV-1) infection in Atlantic salmon Salmo salar L. Fish Shellfish Immunol 32:796–807

    Article  CAS  PubMed  Google Scholar 

  • Hershey JW (1989) Protein phosphorylation controls translation rates. J Biol Chem 264:20823–20826

    Article  CAS  PubMed  Google Scholar 

  • Hidmark AS, Mcinerney GM, Nordstrom EK, Douagi I, Werner KM, Liljestrom P, Karlsson Hedestam GB (2005) Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J Virol 79:10376–10385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodneland K, Bratland A, Christie KE, Endresen C, Nylund A (2005) New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ 66:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hong JR, Lin TL, Hsu YL, Wu JL (1998) Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology 250:76–84

    Article  CAS  PubMed  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    Article  CAS  PubMed  Google Scholar 

  • Hosono N, Suzuki S, Kusuda R (1994) Evidence for relatedness of Japanese isolates of birnaviruses from marine fish to IPNV. J Fish Dis 17:433–437

    Article  Google Scholar 

  • Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis ES, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ML, Johansson DX, Kostic L, Nordstron EKL, Tegerstedt K, Pasetto A, Applequist SE, Ljungberg K, Sirard JC, Liljestrom P (2013) The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon. PLoS One 8:e65964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung H-C, Evensen Ø, Hong J-R, Kuo C-Y, Tso C-H, Ngou F-H, Lu M-W, Wu J-L (2014) Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell. Int J Mol Sci 15:19281–19306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusuda R, Nishi Y, Hosono N, Suzuki S (1993) Serological comparison of birnaviruses isolated from several species of marine fish in South-West Japan. Fish Pathol 28:91–92

    Article  Google Scholar 

  • Larsen R, Rokenes TP, Robertsen B (2004) Inhibition of infectious pancreatic necrosis virus replication by Atlantic salmon Mx1 protein. J Virol 78:7938–7944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauksund S, Greiner-Tollersrud L, Chang C-J, Robertsen B (2015) Infectious pancreatic necrosis virus proteins VP2, VP3, VP4 and VP5 antagonize IFNa1 promoter activation while VP1 induces IFNa1. Virus Res 196:113–121

    Article  CAS  PubMed  Google Scholar 

  • Laz E, Fitzgeraldi KA (2008) Innate immunity: sensing and signalling. Nature Publishing Group, London

    Google Scholar 

  • Lee SB, Bablanian R, Esteban M (1996) Regulated expression of the interferon-induced protein kinase p68 (PKR) by vaccinia virus recombinants inhibits the replication of vesicular stomatitis virus but not that of poliovirus. J Int Cytokine Res 16:1073–1078

    Article  CAS  Google Scholar 

  • Lester K, Hall M, Urquhart K, Gahlawat S, Collet B (2012) Development of an in vitro system to measure the sensitivity to the antiviral Mx protein of fish viruses. J Virol Methods 182:1–8

    Article  CAS  PubMed  Google Scholar 

  • Leu JH, Chang MS, Yao CW, Chou CK, Chen ST, Huang CJ (1998) Genomic organization and characterization of the promoter region of the round-spotted pufferfish (Tetraodon fluviatilis) JAK1 kinase gene. Biochim Biophys Acta 1395:50–56

    Article  CAS  PubMed  Google Scholar 

  • Leu JH, Yan SJ, Lee TF, Chou CM, Chen ST, Hwang PP, Chou CK, Huang CJ (2000) Complete genomic organization and promoter analysis of the round-spotted pufferfish JAK1, JAK2, JAK3, and TYK2 genes DNA. Cell Biol 19:431–446

    CAS  Google Scholar 

  • Lindenmann J, Burke DC, Isaacs A (1957) Studies on the production, mode of action and properties of interferon. Br J Exp Pathol 38:551–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long S, Milev-Milovanovic I, Wilson M, Bengten E, Clem LW, Miller NW, Chinchar VG (2006) Identification and expression analysis of cDNAs encoding channel catfish type I interferons. Fish Shellfish Immunol 21:42–59

    Article  CAS  PubMed  Google Scholar 

  • Lunney JK (1998) Cytokines orchestrating the immune response. Rev Sci Tech 17:84–94

    Article  CAS  PubMed  Google Scholar 

  • Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutfalla G, Roest CH, Stange-Thomann N, Jaillon O, Mogensen K, Monneron D (2003) Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish. BMC Genomics 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • M’gonigle RH (1941) Acute catarrhal enteritis of salmonid fingerlings transactions of the American. Fish Soc 70:297–303

    Article  Google Scholar 

  • Macdonald RD, Dobos P (1981) Identification of the proteins encoded by each genome segment of infectious pancreatic necrosis virus. Virology 114:414–422

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RD, Kennedy JC (1979) Infectious pancreatic necrosis virus persistently infects Chinook salmon embryo cells independent of interferon. Virology 95:260–264

    Article  CAS  PubMed  Google Scholar 

  • Magyar G, Dobos P (1994) Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-Kda polypeptide in infected-cells and of the ns protease in purified virus. Virology 204:580–589

    Article  CAS  PubMed  Google Scholar 

  • Malsberger RG, Cerini CP (1965) Multiplication of infectious pancreatic necrosis virus. Ann N Y Acad Sci 126:320–327

    Article  CAS  PubMed  Google Scholar 

  • Manzoni TB, López CB (2018) Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol 13:493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcloughlin MF, Graham DA (2007) Alphavirus infections in salmonids—a review. J Fish Dis 30:511–531

    Article  CAS  PubMed  Google Scholar 

  • Mcloughlin MF, Nelson RN, Mccormick JI, Rowley HM, Bryson DB (2002) Clinical and histopathological features of naturally occurring pancreas disease in farmed Atlantic salmon, Salmo salar L. J Fish Dis 25:33–43

    Article  Google Scholar 

  • Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber F, Bowie AG, Matikainen S, Paludan SR (2005) Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J Virol 79:12944–12951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merour E, Lamoureux A, Bernard J (2013) Biacchesi, S & Bremont, M. A Fully Attenuated Recombinant Salmonid Alphavirus Becomes Pathogenic through a Single Amino Acid Change in the E2 Glycoprotein Journal of Virology 87:6027–6030

    CAS  PubMed  Google Scholar 

  • Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Munang’andu HM, Fredriksen BN, Mutoloki S, Dalmo RA, Evensen O (2013) Antigen dose and humoral immune response correspond with protection for inactivated infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L). Vet Res 44:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy TM, Rodger HD, Drinan EM, Gannon F, Kruse P, Korting W (1992) The sequential pathology of pancreas disease in Atlantic salmon farms in Ireland. J Fish Dis 15:401–408

    Article  Google Scholar 

  • Neighbours LM, Long K, Whitmore AC, Heise MT (2012) Myd88-dependent toll-like receptor 7 signaling mediates protection from severe ross river virus-induced disease in mice. J Virol 86:10675–10685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nerbovik IG, Solheim MA, Eggestol HO, Ronneseth A, Jakobsen RA, Wergeland HI, Haugland GT (2017) Molecular cloning of MDA5, phylogenetic analysis of RIG-I-like receptors (RLRs) and differential gene expression of RLRs, interferons and proinflammatory cytokines after in vitro challenge with IPNV, ISAV and SAV in the salmonid cell line TO. J Fish Dis 40:1529–1544

    Article  CAS  PubMed  Google Scholar 

  • Owen KE, Kuhn RJ (1997) Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 230:187–196

    Article  CAS  PubMed  Google Scholar 

  • Petterson E, Sandberg M, Santi N (2009) Salmonid alphavirus associated with Lepeophtheirus salmonis (Copepoda: Caligidae) from Atlantic salmon, Salmo salar L. J Fish Dis 32:477–479

    Article  CAS  PubMed  Google Scholar 

  • Petterson E, Stormoen M, Evensen O, Mikalsen AB, Haugland O (2013) Natural infection of Atlantic salmon (Salmo salar L.) with salmonid alphavirus 3 generates numerous viral deletion mutants. J Gen Virol 94:1945–1954

    Article  CAS  PubMed  Google Scholar 

  • Petterson E, Guo TC, Evensen Ø, Mikalsen AB (2016) Experimental piscine alphavirus RNA recombination in vivo yields both viable virus and defective viral RNA. Sci Rep 6:36317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichlmair A, Sousa CRE (2007) Innate recognition of viruses. Immunity 27:370–383

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa C (2009a) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Sousa RE (2009b) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polo JM, Johnston RE (1990) Attenuating mutations in glycoproteins E1 and E2 of Sindbis virus produce a highly attenuated strain when combined in vitro. J Virol 64:4438–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polo JM, Davis NL, Rice CM, Huang HV, Johnston RE (1988) Molecular analysis of sindbis virus pathogenesis in neonatal mice by using virus recombinants constructed invitro. J Virol 62:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC (2001) Evolutionary relationships and systematics of the alphaviruses. J Virol 75:10118–10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell MK, Smith KD, Hood L, Winton JR, Roach JC (2006) Conservation of toll-like receptor signaling pathways in teleost. Fish Comp Biochem Physiol Part D Genomics Proteomics 1:77–88

    Article  PubMed  CAS  Google Scholar 

  • Reno PW (1999) Infectious pancreatic necrosis and associated aquatic Birnaviruses. CABI Publishing, New York

    Google Scholar 

  • Rezelj VV, Levi LI, Vignuzzi M (2018) The defective component of viral populations. Curr Opin Virol 33:74–80

    Article  PubMed  Google Scholar 

  • Rice CM, Strauss JH (1982) Association of sindbis virion glycoproteins and their precursors. J Mol Biol 154:325–348

    Article  CAS  PubMed  Google Scholar 

  • Rimstad E (2003) The infectious pancreatic necrosis virus. In: Skjelstad B (ed) IPN in salmonids—a review. FHL Havbruk, Trondheim

    Google Scholar 

  • Rivas-Aravena A, Muñoz P, Jorquera P, Diaz A, Reinoso C, González-Catrilelbún S, Sandino AM (2017) Study of RNA-A initiation translation of the infectious pancreatic necrosis virus. Virus Res 240:121–129

    Article  CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertsen B, Bergan V, Rokenes T, Larsen R, Albuquerque A (2003) Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. J Interf Cytokine Res 23:601–612

    Article  CAS  Google Scholar 

  • Robledo D, Taggart JB, Ireland JH, Mcandrew BJ, Starkey WG, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch AE, Verner-Jeffreys DW, Paley RK, Rimmer GS, Tew IJ, Bishop SC, Bron JE, Houston RD (2016) Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC Genomics 17:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryman KD, Klimstra WB (2008) Host responses to alphavirus infection. Immunol Rev 225:27–45

    Article  CAS  PubMed  Google Scholar 

  • Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE (2000) Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74:3366–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryman KD, White LJ, Johnston RE, Klimstra WB (2002) Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 15:53–76

    Article  CAS  PubMed  Google Scholar 

  • Ryman KD, Meier KC, Nangle EM, Ragsdale SL, Korneeva NL, Rhoads RE, Macdonald MR, Klimstra WB (2005) Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol 79:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Jean SR, Perez-Prieto SI (2006) Interferon mediated antiviral activity against salmonid fish viruses in BF-2 and other cell lines. Vet Immunol Immunopathol 110:1–10

    Article  CAS  PubMed  Google Scholar 

  • Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809. table

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Desalle R, Fisher PB (2008) Evolution of MDA-5/RIG-I-dependent innate immunity: independent evolution by domain grafting. Proc Natl Acad Sci USA 105:17040–17045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Sousa CRE (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892

    Article  CAS  PubMed  Google Scholar 

  • Shatkin AJ, Lafiandra AJ (1972) Transcription by infectious subviral particles of reovirus. J Virol 10:698–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman LA, Griffin DE (1990) Pathogenesis of encephalitis induced in newborn mice by virulent and avirulent strains of Sindbis virus. J Virol 64:2041–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman RH (1994) Fascination with 2-5A-dependent RNase: a unique enzyme that functions in interferon action. J Interferon Res 14:101–104

    Article  CAS  PubMed  Google Scholar 

  • Simmons DT, Strauss JH (1972) Replication of Sindbis virus. I. Relative size and genetic content of 26 s and 49 s RNA. J Mol Biol 71:599–613

    Article  CAS  PubMed  Google Scholar 

  • Skaug B, Chen ZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143:187–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjaeveland I, Iliev DB, Strandskog G, Jorgensen JB (2009) Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmo salar). Dev Comp Immunol 33:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Skjesol A, Aamo T, Hegseth MN, Robertsen B, Jorgensen JB (2009) The interplay between infectious pancreatic necrosis virus (IPNV) and the IFN system: IFN signaling is inhibited by IPNV infection. Virus Res 143:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjesol A, Hansen T, Shi CY, Thim HL, Jorgensen JB (2010) Structural and functional studies of STAT1 from Atlantic salmon (Salmo salar). BMC Immunol 11:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorimachi M, Hara T (1985) Characteristics and pathogenicity of a virus isolated from yellowtail fingerlings showing ascites. Fish Pathol 19:231–238

    Article  Google Scholar 

  • Staeheli P, Pitossi F, Pavlovic J (1993) Mx proteins: GTPases with antiviral activity. Trends Cell Biol 3:268–272

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Caccamo M, Laird G, Leptin M (2007) Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 8:R251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stojdl DF, Abraham N, Knowles S, Marius R, Brasey A, Lichty BD, Brown EG, Sonenberg N, Bell JC (2000) The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol 74:9580–9585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranden AM, Staeheli P, Pavlovic J (1993) Function of the mouse Mx1 protein is inhibited by overexpression of the PB2 protein of influenza virus. Virology 197:642–651

    Article  CAS  PubMed  Google Scholar 

  • Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss EG, Rice CM, Strauss JH (1984) Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 133:92–110

    Article  CAS  PubMed  Google Scholar 

  • Suhrbier A, Jaffar-Bandjee MC, Gasque P (2012) Arthritogenic alphaviruses—an overview. Nat Rev Rheumatol 8:420–429

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Robertsen B, Wang Z, Liu B (2009) Identification of an Atlantic salmon IFN multigene cluster encoding three IFN subtypes with very different expression properties. Dev Comp Immunol 33:547–558

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Skjæveland I, Svingerud T, Zou J, Jørgensen J, Robertsen B (2011) Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon. J Virol 85:9188–9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svingerud T, Solstad T, Sun B, Nyrud ML, Kileng O, Greiner-Tollersrud L, Robertsen B (2012) Atlantic salmon type I IFN subtypes show differences in antiviral activity and cell-dependent expression: evidence for high IFNb/IFNc-producing cells in fish lymphoid tissues. J Immunol 189:5912–5923

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immunol Rev 220:214–224

    Article  CAS  PubMed  Google Scholar 

  • Tesh RB (1982) Arthritides caused by mosquito-borne viruses. Annu Rev Med 33:31–40

    Article  CAS  PubMed  Google Scholar 

  • Tucker PC, Griffin DE (1991) Mechanism of altered Sindbis virus neurovirulence associated with a single-amino-acid change in the E2-glycoprotein. J Virol 65:1551–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood BO, Smale CJ, Brown F, Hill BJ (1977) Relationship of a virus from Tellina tenuis to infectious pancreatic necrosis virus. J Gen Virol 36:93–109

    Article  CAS  PubMed  Google Scholar 

  • Ventoso I (2012) Adaptive changes in alphavirus mRNA translation allowed colonization of vertebrate hosts. J Virol 86:9484–9494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernon PS, Griffin DE (2005) Characterization of an in vitro model of alphavirus infection of immature and mature neurons. J Virol 79:3438–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva RA, Galaz JL, Valdes JA, Jashes MM, Sandino AM (2004) Genome assembly and particle maturation of the birnavirus infectious pancreatic necrosis virus. J Virol 78:13829–13838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villoing S, Bearzotti M, Chilmonczyk S, Castric J, Bremont M (2000) Rainbow trout sleeping disease virus is an atypical alphavirus. J Virol 74:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel RH, Provencher SW, Von Bonsdorff CH, Adrian M, Dubochet J (1986) Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320:533–535

    Article  CAS  PubMed  Google Scholar 

  • Vogel AJ, Harris S, Marsteller N, Condon SA, Brown DM (2014) Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection. Viral Immunol 27:214–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlberg JM, Boere WA, Garoff H (1989) The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J Virol 63:4991–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hinson ER, Cresswell P (2007) The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96–105

    Article  CAS  PubMed  Google Scholar 

  • Wang WL, Hong JR, Lin GH, Liu W, Gong HY, Lu MW, Lin CC, Wu JL (2011) Stage-specific expression of TNFα regulates bad/bid-mediated apoptosis and RIP1/ROS-mediated secondary necrosis in Birnavirus-infected fish cells. PLoS One 6:e16740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston J, Villoing S, Bremont M, Castric J, Pfeffer M, Jewhurst V, Mcloughlin M, Rodseth O, Christie KE, Koumans J, Todd D (2002) Comparison of two aquatic alphaviruses, salmon pancreas disease virus and sleeping disease virus, by using genome sequence analysis, monoclonal reactivity, and cross-infection. J Virol 76:6155–6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte SK (2007) The innate immune response of finfish—a review of current knowledge. Fish Shellfish Immunol 23:1127-1151.

    Google Scholar 

  • Wolf K, Quimby MC (1971) Salmonid viruses: infectious pancreatic necrosis virus. Morphology, pathology and serology of first European isolations. Arch Gesamte Virusforsch 34:144–156

    Article  CAS  PubMed  Google Scholar 

  • Wolf K, Snieszko SF, Dunbar CE, Pyle E (1960) Virus nature of infectious pancreatic necrosis in trout. Proc Soc Exp Biol Med 104:105–108

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Guo TC, Mutoloki S, Haugland O, Marjara IS, Evensen O (2010) Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro. J Virol 84:8903–8912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Guo TC, Mutoloki S, Haugland O, Evensen O (2012) Gene expression studies of host response to salmonid alphavirus subtype 3 experimental infections in Atlantic salmon. Vet Res 43:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Evensen O, Munang’andu HM (2015) De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and Salmonid alphavirus subtype-3 infection. BMC Genomics 16:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Gui J (2004) Molecular characterization and IFN signal pathway analysis of Carassius auratus CaSTAT1 identified from the cultured cells in response to virus infection. Dev Comp Immunol 28:211–227

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Burke CW, Ryman KD, Klimstra WB (2007) Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 81:11246–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Lindqvist B, Garoff H, Von Bonsdorff CH, Liljestrom P (1994) A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. EMBO J 13:4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, Jiang Z (2013) Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci 9:200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øystein Evensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, C., Gamil, A.A.A., Gadan, K., Mikalsen, A.B., Evensen, Ø. (2022). Antiviral Innate Immune Responses: Infectious Pancreatic Necrosis Virus and Salmonid Alphavirus. In: Buchmann, K., Secombes, C.J. (eds) Principles of Fish Immunology . Springer, Cham. https://doi.org/10.1007/978-3-030-85420-1_14

Download citation

Publish with us

Policies and ethics