Skip to main content

Corneal Tomography and Biomechanical Integration

  • Chapter
  • First Online:
Keratoconus

Abstract

Corneal topography helped to recognize an irregular corneal curvature resulting from the pathology and differentiate it from a regular pattern. However, the greater recognition of variants of normality reached greater sensitivity and specificity with the analysis of the posterior face obtained by tomography of the anterior segment. The construction of three-dimensional images presents a corneal structure at a new level. It was from the corneal tomographic analysis that more incredible wealth of details was obtained, mainly on the pachymetry distribution and posterior face analysis.

However, an earlier and integrative analysis is necessary. In other words, seek a more integrative assessment that is not limited to image assessment but behavioral.

In this sense, can understanding the corneal elasticity and resistance associated with tomography be an interesting tool for assessing susceptibility to ectasia in refractive surgeries and monitoring progression in installed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischbarg J, Maurice DM. An update on corneal hydration control. Exp Eye Res. 2004;78(3):537–41.

    Article  CAS  PubMed  Google Scholar 

  2. Azartash K, Kwan J, Paugh JR, Nguyen AL, Jester JV, Gratton E. Pre-corneal tear film thickness in humans measured with a novel technique. Mol Vis. 2011;17:756–67.

    PubMed  PubMed Central  Google Scholar 

  3. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alvarado J, Murphy C, Juster R. Age-related changes in the basement membrane of the human corneal epithelium. Invest Ophthalmol Vis Sci. 1983;24(8):1015–28.

    CAS  PubMed  Google Scholar 

  5. Schmoll T, Unterhuber A, Kolbitsch C, Le T, Stingl A, Leitgeb R. Precise thickness measurements of Bowman’s layer, epithelium, and tear film. Optom Vis Sci. 2012;89(5):E795–802.

    Article  PubMed  Google Scholar 

  6. DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.

    Article  PubMed  Google Scholar 

  7. Cheng X, Petsche SJ, Pinsky PM. A structural model for the in vivo human cornea including collagen-swelling interaction. J R Soc Interface. 2015;12(109):20150241.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doughty MJ, Bergmanson JP. Resolution and reproducibility of measures of the diameter of small collagen fibrils by transmission electron microscopy—application to the rabbit corneal stroma. Micron. 2005;36(4):331–43.

    Google Scholar 

  9. Moilanen JA, Vesaluoma MH, Muller LJ, Tervo TM. Long-term corneal morphology after PRK by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2003;44(3):1064–9.

    Article  PubMed  Google Scholar 

  10. Parry DA, Craig AS. Quantitative electron microscope observations of the collagen fibrils in rat-tail tendon. Biopolymers. 1977;16(5):1015–31.

    Article  CAS  PubMed  Google Scholar 

  11. Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008;86(5):783–90.

    Article  CAS  PubMed  Google Scholar 

  12. Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol. 2019;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanellopoulos AJ, Asimellis G. Revisiting keratoconus diagnosis and progression classification based on evaluation of corneal asymmetry indices, derived from Scheimpflug imaging in keratoconic and suspect cases. Clin Ophthalmol. 2013;7:1539–48.

    Article  PubMed  Google Scholar 

  14. Marchini M, Morocutti M, Ruggeri A, Koch MH, Bigi A, Roveri N. Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation. Connect Tissue Res. 1986;15(4):269–81.

    Article  CAS  PubMed  Google Scholar 

  15. Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, et al. The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol. 2009;78:25–49.

    Article  CAS  PubMed  Google Scholar 

  16. Smelser GK, Pei YF. Cytological basis of protein leakage into the eye following paracentesis. An electron microscopic study. Invest Ophthalmol. 1965;4:249–63.

    CAS  PubMed  Google Scholar 

  17. Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49(9):3919–26.

    Article  PubMed  Google Scholar 

  18. Ambrosio R Jr, Nogueira LP, Caldas DL, Fontes BM, Luz A, Cazal JO, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51(2):11–38.

    Article  PubMed  Google Scholar 

  19. Sinha Roy A, Dupps WJ Jr. Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: a whole-eye finite element analysis. J Refract Surg. 2009;25(10):875–87.

    Article  PubMed  Google Scholar 

  20. Vinciguerra R, Ambrosio R Jr, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg. 2017;33(6):399–407.

    Article  PubMed  Google Scholar 

  21. Sedaghat MR, Momeni-Moghaddam H, Ambrosio R Jr, Heidari HR, Maddah N, Danesh Z, et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea. 2018;37(8):1025–34.

    Article  PubMed  Google Scholar 

  22. Wang YM, Chan TCY, Yu M, Jhanji V. Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg. 2017;33(9):632–8.

    Article  PubMed  Google Scholar 

  23. Vinciguerra R, Ambrosio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10.

    Article  PubMed  Google Scholar 

  24. Ambrosio R Jr, Lopes BT, Faria-Correia F, Salomao MQ, Buhren J, Roberts CJ, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Article  PubMed  Google Scholar 

  25. Akhtar S, Bron AJ, Salvi SM, Hawksworth NR, Tuft SJ, Meek KM. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol. 2008;86(7):764–72.

    Article  PubMed  Google Scholar 

  26. Vinciguerra R, Romano V, Arbabi EM, Brunner M, Willoughby CE, Batterbury M, et al. In vivo early corneal biomechanical changes after corneal cross-linking in patients with progressive keratoconus. J Refract Surg. 2017;33(12):840–6.

    Article  PubMed  Google Scholar 

  27. Daxer A. Biomechanics of corneal ring implants. Cornea. 2015;34(11):1493–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Winkler M, Shoa G, Xie Y, Petsche SJ, Pinsky PM, Juhasz T, et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Invest Ophthalmol Vis Sci. 2013;54(12):7293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran DB, Sarayba MA, Bor Z, Garufis C, Duh YJ, Soltes CR, et al. Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg. 2005;31(1):97–105.

    Article  PubMed  Google Scholar 

  30. Reinstein DZ, Archer TJ, Gobbe M. Stability of LASIK in topographically suspect keratoconus confirmed nonkeratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up. J Refract Surg. 2009;25:569–77.

    Google Scholar 

  31. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29:1780–85.

    Google Scholar 

  32. Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85–9.

    PubMed  Google Scholar 

  33. Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg. 2008;24(1):S90–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Felipe Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, P.F., Moscovici, B.K. (2022). Corneal Tomography and Biomechanical Integration. In: Almodin, E., Nassaralla, B.A., Sandes, J. (eds) Keratoconus . Springer, Cham. https://doi.org/10.1007/978-3-030-85361-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85361-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85360-0

  • Online ISBN: 978-3-030-85361-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics