Skip to main content

The Role of Dietary Habits on Development and Progress of Risk Factors of Chronic Non-communicable Diseases

  • Chapter
  • First Online:
Healthy Lifestyle

Abstract

According to the World Health Organization “Noncommunicable diseases (NCDs) tend to be of long duration and are the result of a combination of genetic, physiological, environmental and behavioral factors”. Diet is related to the modifiable behavioral risk factors and metabolic risk factors in different ways, as a protection or a risk factor. The role of dietary habits is a key point in the prevention and treatment of NCD during all life. In childhood, the most important action is the prevention of obesity as a driver for other NCDs. In adolescence, the importance of dietary habits is boosted with behaviors that are established in this life stage (use of alcohol, tobacco, sedentary lifestyle, and an unhealthy diet). Unhealthy diets are characterized by low consumption of fruits, vegetables, whole grains, cereals, meat, legumes, dairy, among other “basic food”, and the high consumption of ultra-processed food, fast food, and sugar-sweetened beverages. Adulthood is a life stage strongly marked by the appearance of NCDs (although it’s already observed in adolescents, especially the ones with obesity) and the insertion on the work market. The life changes during adulthood are strongly related to the NCDs and the diet is one of the most important. The evidence points that energy balance or restriction, sodium intake until 2 g/day, Mediterranean diet, replacement of saturated for unsaturated fatty acids (poly or mono), fruits and vegetables, higher dietary fiber, whole grains, omega-3 and omega-6 fatty acids, low glycemic index/load food, DASH diet, Nuts, Plant-based diet/vegetarian diet, dairy products (especially low fat and fermented products), fish and, coffee have protective action against NCD. Meanwhile, there is a group of food that represents more risk to develop NCDs: high intake of the salt and preserved salt food, high intake of the red meat and processed meat, high alcohol consumption, high saturated fatty acids intake, high intake of the sugar/sweetened beverages, trans-fatty acids, diet higher in glycemic index and load, Western diet pattern (large portion size, high intake of the energy-dense food, fast food, red meat, and processed meat), very hot drinks and foods, dietary cholesterol, diet with high inflammatory index. Elderly is marked by the presence of multiple NCDs. In this life stage diet quality has a huge effect on physical condition, cognitive condition, bone health, eye health, vascular function, and the immune system. Therefore, actions for the prevention and control of NCDs should be recognized as a health priority and should adopt a life-course approach.

Let food be thy medicine and medicine be thy food.

—Hippocrates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2018) Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. Accessed 12 Sep 2020

  2. Monteiro CA, Cannon G, Levy RB et al (2019) Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22(5):936–941

    PubMed  Google Scholar 

  3. Collaborators GBDD (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393(10184):1958–1972

    Google Scholar 

  4. Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28:1–14

    PubMed  Google Scholar 

  5. World Health Organization (2020) UNICEF/WHO/The World Bank Group joint child malnutrition estimates: levels and trends in child malnutrition: key findings of the 2020 edition

    Google Scholar 

  6. Moreno Villares JM (2016) Los mil primeros días de vida y la prevención de la enfermedad en el adulto. Nutr Hosp 33:8–11

    Google Scholar 

  7. Rito Ana I, Buoncristiano M, Spinelli A et al (2019) Association between characteristics at birth, breastfeeding and obesity in 22 countries: the WHO European childhood obesity surveillance initiative—COSI 2015/2017. Obes Facts 12(2):226–243

    PubMed  PubMed Central  Google Scholar 

  8. World Health Organization (2016) Report of the commission on ending childhood obesity. WHO, Geneva

    Google Scholar 

  9. Virtanen SM (2016) Dietary factors in the development of type 1 diabetes: dietary factors and risk of type 1 diabetes. Pediatr Diabetes 17:49–55

    CAS  PubMed  Google Scholar 

  10. Hancu A, Mihaltan F, Radulian G (2019) Asthma and ultra-processed food. Maedica 14(4):402

    PubMed  PubMed Central  Google Scholar 

  11. Wyness L (2014) Nutrition in early life and the risk of asthma and allergic disease. Br J Community Nurs 19(Sup7):S28–S32

    Google Scholar 

  12. Brumana L, Arroyo A, Schwalbe NR et al (2017) Maternal and child health services and an integrated, life-cycle approach to the prevention of non-communicable diseases. BMJ global health 2 (3):e000295

    Google Scholar 

  13. Brazil (2014) Dietary guidelines for the Brazilian population. Ministry of Health of Brasilia, Brazil

    Google Scholar 

  14. Puwar T, Saxena D, Yasobant S et al (2018) Noncommunicable diseases among school-going adolescents: a case study on prevalence of risk factors from Sabarkantha District of Gujarat, India. Indian J Community Med 43(Suppl 1):S33–S37

    PubMed  PubMed Central  Google Scholar 

  15. Pan American Health Organization (2012) Fact sheet: Adolescents & Non-Communicable Diseases. https://www.paho.org/hq/dmdocuments/2012/PAHO-Factsheet-Adolescents-NCDS-en-2012.pdf. Accessed 10 Sep 2020

  16. Bezerra MRE, Lyra MJ, dos Santos MAM et al (2018) Fatores de Risco Modificáveis para Doenças Crônicas nao Transmissíveis em Adolescentes: Revisao Integrativa. Adolescencia e Saude 15(2):113–120

    Google Scholar 

  17. Baker R, Taylor E, Essafi S et al (2016) Engaging young people in the prevention of noncommunicable diseases. Bull World Health Organ 94(7):484

    PubMed  PubMed Central  Google Scholar 

  18. Ricardo CZ, Azeredo CM, Machado de Rezende LF et al (2019) Co-occurrence and clustering of the four major non-communicable disease risk factors in Brazilian adolescents: Analysis of a national school-based survey. PloS one 14 (7):e0219370

    Google Scholar 

  19. World Health Organization (2017) Adolescent obesity and related behaviours: trends and inequalities in the WHO European Region, 2002–2014

    Google Scholar 

  20. World Health Organization (2004) Global strategy on diet, physical activity and health. https://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf. Accessed 9 Sep 2020

  21. Sanyaolu A, Okorie C, Qi X et al (2019) Childhood and adolescent obesity in the united states: a public health concern. Global Pediatric Health 6:2333794X19891305

    Google Scholar 

  22. Simões CF, Lopes WA, Remor JM et al (2018) Prevalence of weight excess in Brazilian children and adolescents: a systematic review. Revista Brasileira de Cineantropometria & Desempenho Humano 20:517–531

    Google Scholar 

  23. Bloch KV, Cardoso MA, Sichieri R (2016) Study of cardiovascular risk factors in adolescents (ERICA): results and potentiality. Rev Saude Publica 50(Suppl 1):2s

    PubMed  PubMed Central  Google Scholar 

  24. Précoma DB, Oliveira GMMD, Simao AF et al (2019) Updated cardiovascular prevention guideline of the Brazilian Society of Cardiology-2019. Arq Bras Cardiol 113(4):787–891

    PubMed  PubMed Central  Google Scholar 

  25. Faria Neto JR, Bento VF, Baena CP et al (2016) ERICA: prevalence of dyslipidemia in Brazilian adolescents. Rev Saude Publica 50(Suppl 1):10s

    PubMed  Google Scholar 

  26. Daniels SR (2019) Understanding the global prevalence of hypertension in children and adolescents. JAMA Pediatr 173(12):1133–1134

    PubMed  Google Scholar 

  27. Ziegler R, Neu A (2018) Diabetes in childhood and adolescence. Dtsch Arztebl Int 115(9):146–156

    PubMed  PubMed Central  Google Scholar 

  28. Reinehr T (2013) Type 2 diabetes mellitus in children and adolescents. World J Diabetes 4(6):270–281

    PubMed  PubMed Central  Google Scholar 

  29. Lascar N, Brown J, Pattison H et al (2018) Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol 6(1):69–80

    PubMed  Google Scholar 

  30. Copeland KC, Becker D, Gottschalk M et al (2005) Type 2 diabetes in children and adolescents: risk factors, diagnosis, and treatment. Clin Diabetes 23(4):181–185

    Google Scholar 

  31. Pulgaron ER, Delamater AM (2014) Obesity and type 2 diabetes in children: epidemiology and treatment. Cur Diabetes Rep 14(8):508

    Google Scholar 

  32. Vasconcelos HCAd, Araújo MFMd, Damasceno MMC et al (2010) Fatores de risco para diabetes mellitus tipo 2 entre adolescentes. Rev Esc Enfermagem USP 44:881–887

    Google Scholar 

  33. Studart EPM, Arruda SPM, Sampaio HAdC et al (2018) Dietary patterns and glycemic indexes in type 2 diabetes patients. Rev Nutr 31(1):1–12

    CAS  Google Scholar 

  34. Malik VS, Fung TT, van Dam RM et al (2012) Dietary patterns during adolescence and risk of type 2 diabetes in middle-aged women. Diabetes Care 35(1):12–18

    CAS  PubMed  Google Scholar 

  35. Darnton-Hill I, Nishida C, James WPT (2004) A life course approach to diet, nutrition and the prevention of chronic diseases. Pub Health Nutr 7(1a):101–121

    CAS  Google Scholar 

  36. Bianchi VE, Herrera PF, Laura R (2019) Effect of nutrition on neurodegenerative diseases—a systematic review. Nutr Neurosci 4:1–25

    Google Scholar 

  37. World Health Organization (2003) Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. World Health Organization, Geneva

    Google Scholar 

  38. World Health Organization (2012) Guideline: sodium intake for adults and children. World Health Organization, Geneva

    Google Scholar 

  39. Key TJ, Schatzkin A, Willett WC et al (2004) Diet, nutrition and the prevention of cancer. Public Health Nutr 7:187–200

    PubMed  Google Scholar 

  40. Reddy KS, Katan MB (2004) Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr 7(1a):167–186

    Google Scholar 

  41. Bechthold A, Boeing H, Schwedhelm C et al (2019) Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 59(7):1071–1090

    CAS  PubMed  Google Scholar 

  42. Steck SE, Murphy EA (2020) Dietary patterns and cancer risk. Nat Rev Cancer 20(2):125–138

    CAS  PubMed  Google Scholar 

  43. Swinburn BA, Seidell JC, James WPT (2004) Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr 7(1a):123–146

    CAS  PubMed  Google Scholar 

  44. World Health Organization (2018) Global status report on alcohol and health 2018. World Health Organization, Geneva

    Google Scholar 

  45. Becerra-Tomás N, Blanco Mejía S, Viguiliouk E et al (2020) Mediterranean diet, cardiovascular disease and mortality in diabetes: a systematic review and meta-analysis of prospective cohort studies and randomized clinical trials Crit Rev Food Sci Nutr 60 (7):1207–1227

    Google Scholar 

  46. Franquesa M, Pujol-Busquets G, García-Fernández E et al (2019) Mediterranean diet and cardiodiabesity: a systematic review through evidence-based answers to key clinical questions. Nutrients 11(3):655

    CAS  PubMed Central  Google Scholar 

  47. Hill E, Goodwill AM, Gorelik A, Szoeke C (2019) Diet and biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging 76:45–52

    CAS  PubMed  Google Scholar 

  48. Kahleova H, Salas-Salvadó J, Rahelić D et al (2019) Dietary patterns and cardiometabolic outcomes in diabetes: a summary of systematic reviews and meta-analyses. Nutrients 11(9):2209

    CAS  PubMed Central  Google Scholar 

  49. Molendijk M, Molero P, Ortuño Sánchez-Pedreño F et al (2018) Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies. J Affect Disord 226:346–354

    PubMed  Google Scholar 

  50. Morze J, Danielewicz A, Przybyłowicz et al (2020) An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur J Nutr 1–26

    Google Scholar 

  51. Samadi M, Moradi S, Moradinazar M et al (2019) Dietary pattern in relation to the risk of Alzheimer’s disease: a systematic review. Neurol Sci 40(10):2031–2043

    PubMed  Google Scholar 

  52. Steyn NP, Mann J, Bennett PH et al (2004) Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr 7(1a):147–165

    CAS  PubMed  Google Scholar 

  53. Mensink RP (2016) Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis. World Health Organization, Geneva

    Google Scholar 

  54. Hodge AM, Bassett JK, Milne RL et al (2018) Consumption of sugar-sweetened and artificially sweetened soft drinks and risk of obesity-related cancers. Public Health Nutr 21(9):1618–1626

    PubMed  Google Scholar 

  55. Hu D, Cheng L, Jiang W (2019) Sugar-sweetened beverages consumption and the risk of depression: a meta-analysis of observational studies. J Affect Disorders 245:348–355

    PubMed  Google Scholar 

  56. Makarem N, Bandera EV, Nicholson JM, Parekh N (2018) Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: a systematic review of longitudinal studies. Annu Rev Nutr 38:17–39

    CAS  PubMed  Google Scholar 

  57. Schlesinger S, Neuenschwander M, Schwedhelm C et al (2019) Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr 10(2):205–218

    PubMed  PubMed Central  Google Scholar 

  58. Zhang K, Chen X, Zhang L et al (2020) Fermented dairy foods intake and risk of cardiovascular diseases: a meta-analysis of cohort studies. Crit Rev Food Sci Nutr 60(7):1189–1194

    PubMed  Google Scholar 

  59. Aune D (2019) Plant foods, antioxidant biomarkers, and the risk of cardiovascular disease, cancer, and mortality: a review of the evidence. Adv Nutr 10 (Supplement_4):S404–S421

    Google Scholar 

  60. Głąbska D, Guzek D, Groele B, Gutkowska K (2020) Fruit and vegetable intake and mental health in adults: a systematic review. Nutrients 12(1):115

    PubMed Central  Google Scholar 

  61. Michels N, Van der Meulen K, Huybrechts I (2018) Dietary trans fatty acid intake in relation to cancer risk: a systematic review. J Global Oncol 4(Supplement 2):24s–24s

    Google Scholar 

  62. Gianfredi V, Nucci D, Salvatori T et al (2019) Rectal cancer: 20% risk reduction thanks to dietary fibre intake. systematic review and meta-analysis. Nutrients 11 (7):1579

    Google Scholar 

  63. McRae MP (2017) Health benefits of dietary whole grains: an umbrella review of meta-analyses. J Chiropr Med 16(1):10–18

    PubMed  Google Scholar 

  64. McRae MP (2017) Dietary fiber is beneficial for the prevention of cardiovascular disease: an umbrella review of meta-analyses. J Chiropr Med 16(4):289–299

    PubMed  PubMed Central  Google Scholar 

  65. Li J, Guasch-Ferré M, Li Y et al (2020) Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 112(1):150–167

    PubMed  PubMed Central  Google Scholar 

  66. Livesey G, Taylor R, Livesey HF et al (2019) Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients 11(6):1280

    CAS  PubMed Central  Google Scholar 

  67. Turati F, Galeone C, Augustin LSA et al (2019) Glycemic index, glycemic load and cancer risk: an updated meta-analysis. Nutrients 11(10):2342

    CAS  PubMed Central  Google Scholar 

  68. yu Ma X, ping Liu J, yuan Song Z, (2012) Glycemic load, glycemic index and risk of cardiovascular diseases: meta-analyses of prospective studies. Atherosclerosis 223(2):491–496

    Google Scholar 

  69. McEvoy CT, Cardwell CR, Woodside JV et al (2014) A posteriori dietary patterns are related to risk of type 2 diabetes: findings from a systematic review and meta-analysis. J Acad Nutr Diet 114(11):1759-1775.e1754

    PubMed  Google Scholar 

  70. Li C, Yang L, Zhang D et al (2016) Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res 36(7):627–635

    CAS  PubMed  Google Scholar 

  71. Lin X, Liu L, Fu Y et al (2018) Dietary cholesterol intake and risk of lung cancer: a meta-analysis. Nutrients 10(2):185

    PubMed Central  Google Scholar 

  72. Ali Mohsenpour M, Fallah-Moshkani R, Ghiasvand R et al (2019) Adherence to dietary approaches to stop hypertension (DASH)-style diet and the risk of cancer: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr 38(6):513–525

    PubMed  Google Scholar 

  73. Chiavaroli L, Viguiliouk E, Nishi SK et al (2019) DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients 11(2)

    Google Scholar 

  74. Medina-Remón A, Kirwan R, Lamuela-Raventós RM et al (2018) Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 58(2):262–296

    PubMed  Google Scholar 

  75. Eslami O, Shidfar F, Dehnad A (2019) Inverse association of long-term nut consumption with weight gain and risk of overweight/obesity: a systematic review. Nutr Res 68:1–8

    CAS  PubMed  Google Scholar 

  76. Dinu M, Abbate R, Gensini GF et al (2017) Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 57(17):3640–3649

    PubMed  Google Scholar 

  77. Glenn AJ, Viguiliouk E, Seider M et al (2019) Relation of vegetarian dietary patterns with major cardiovascular outcomes: a systematic review and meta-analysis of prospective cohort studies. Front Nutr 6:80

    PubMed  PubMed Central  Google Scholar 

  78. Qian F, Liu G, Hu FB et al (2019) Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Int Med 179(10):1335–1344

    Google Scholar 

  79. Satija A, Hu FB (2018) Plant-based diets and cardiovascular health. Trends Cardiovasc Med 28(7):437–441

    PubMed  PubMed Central  Google Scholar 

  80. Jayedi A, Emadi A, Shab-Bidar S (2018) Dietary inflammatory index and site-specific cancer risk: a systematic review and dose-response meta-analysis. Adv Nutr 9(4):388–403

    PubMed  PubMed Central  Google Scholar 

  81. Namazi N, Larijani B, Azadbakht L (2018) Dietary inflammatory index and its association with the risk of cardiovascular diseases metabolic syndrome, and mortality: a systematic review and meta-analysis. Horm Metab Res 50(5):345–358

    CAS  PubMed  Google Scholar 

  82. Phillips CM, Chen LW, Heude B, Bernard JY, Harvey NC, Duijts L, Mensink-Bout SM, Polanska K, Mancano G, Suderman M, Shivappa N, Hébert JR (2019) Dietary inflammatory index and non-communicable disease risk: a narrative review. Nutrients 11(8):1873

    Google Scholar 

  83. Askari M, Heshmati J, Shahinfar H et al (2020) Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes 44(10):2080–2091

    Google Scholar 

  84. Chen X, Zhang Z, Yang H (2020) Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J 19(1):86

    PubMed  PubMed Central  Google Scholar 

  85. Pagliai G, Dinu M, Madarena MP et al (2020) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 14:1–11

    Google Scholar 

  86. Meneguelli ST, Hinkelmann VJ, Hermsdorff HHM et al (2020) Food consumption by degree of processing and cardiometabolic risk: a systematic review. Int J Food Sciences Nutr 71(6):678–692

    Google Scholar 

  87. Srour B, Fezeu LK, Kesse-Guyot E et al (2020) Ultraprocessed food consumption and risk of type 2 diabetes among participants of the nutrinet-Santé prospective cohort. JAMA Int Med 180(2):283–291

    Google Scholar 

  88. Aune D, Norat T, Romundstad PA (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 98(4):1066–1083

    CAS  PubMed  Google Scholar 

  89. Li Y, Lv MR, Wei YJ et al (2017) Dietary patterns and depression risk: a meta-analysis. Psychiatry Res 253:373–382

    PubMed  Google Scholar 

  90. Zhang K, Dai H, Liang W et al (2019) Fermented dairy foods intake and risk of cancer. Int J Cancer 144(9):2099–2108

    CAS  PubMed  Google Scholar 

  91. Jayedi A, Zargar MS, Shab-Bidar S (2019) Fish consumption and risk of myocardial infarction: a systematic review and dose-response meta-analysis suggests a regional difference. Nutr Res 62:1–12

    CAS  PubMed  Google Scholar 

  92. Jiang G, Li B, Liao X et al (2016) Poultry and fish intake and risk of esophageal cancer: a meta-analysis of observational studies. Asia Pac J Clin Oncol 12(1):e82–e91

    PubMed  Google Scholar 

  93. Li F, Liu X, Zhang D (2015) Fish consumption and risk of depression: a meta-analysis. J Epidem Community Health 70(3):299–304

    Google Scholar 

  94. Lian W, Wang R, Xing B et al (2017) Fish intake and the risk of brain tumor: a meta-analysis with systematic review. Nutr J 11;16(1):1

    Google Scholar 

  95. Zhao W, Tang H, Yang X et al (2019) Fish consumption and stroke risk: a meta-analysis of prospective cohort studies. J Stroke Cerebrovasc Dis 28(3):604–611

    PubMed  Google Scholar 

  96. Carlström M, Larsson SC (2018) Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev (6):395–417

    Google Scholar 

  97. D’Elia L, La Fata E, Galletti F et al (2019) Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. Eur J Nutr 58(1):271–280

    CAS  PubMed  Google Scholar 

  98. Ding M, Bhupathiraju SN, Satija A et al (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129(6):643–659

    CAS  PubMed  Google Scholar 

  99. Hong CT, Chan L, Bai C-H (2020) The effect of caffeine on the risk and progression of Parkinson's disease: a meta-analysis. Nutrients 12(6):1860

    Google Scholar 

  100. Lee A, Lim W, Kim S et al (2019) Coffee intake and obesity: a meta-analysis. Nutrients 11(6):1274

    CAS  PubMed Central  Google Scholar 

  101. Wang A, Wang S, Zhu C et al (2016) Coffee and cancer risk: a meta-analysis of prospective observational studies. Sci Rep 6(1):1–13

    Google Scholar 

  102. Cheng HM, Koutsidis G, Lodge JK et al (2019) Lycopene and tomato and risk of cardiovascular diseases: a systematic review and meta-analysis of epidemiological evidence. Crit Rev Food Sci Nutr 59(1):141–158

    CAS  PubMed  Google Scholar 

  103. Rowles JL, Ranard KM, Smith JW et al (2017) Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 20(4):361–377

    CAS  PubMed  Google Scholar 

  104. Saini RK, Rengasamy KRR, Mahomoodally FM et al (2020) Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: an update on epidemiological and mechanistic perspectives. Pharmacol Res 155:104730

    Google Scholar 

  105. Wang X, Yang HH, Liu Y et al (2016) Lycopene consumption and risk of colorectal cancer: a meta-analysis of observational studies. Nutr Cancer 68(7):1083–1096

    CAS  PubMed  Google Scholar 

  106. Hemler EC, Hu FB (2019) Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr Atheroscler Rep 21(5):18

    PubMed  Google Scholar 

  107. Shivappa N, Steck SE, Hurley TG et al (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Publ Health Nutrition 17(8):1689–1696

    Google Scholar 

  108. Cosentino F, Grant PJ, Aboyans V et al (2020) 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323

    PubMed  Google Scholar 

  109. Soliman GA (2018) Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients 10(6):780

    PubMed Central  Google Scholar 

  110. Abdelhamid AS, Brown TJ, Brainard JS et al (2020) Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database of Syst Rev 2020(3)

    Google Scholar 

  111. Hu Y, Hu FB, Manson JAE (2019) Marine Omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127 477 participants. J Am Heart Association 8 (19):e013543

    Google Scholar 

  112. Innes JK, Calder PC (2020) Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci 21(4):1362

    CAS  PubMed Central  Google Scholar 

  113. Kang ZQ, Yang Y, Xiao B (2020) Dietary saturated fat intake and risk of stroke: Systematic review and dose–response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 30(2):179–189

    CAS  PubMed  Google Scholar 

  114. Liu M, Zuo LSY, Sun TY et al (2020) Circulating very-long-chain saturated fatty acids were inversely associated with cardiovascular health: a prospective cohort study and meta-analysis. Nutrients 12(9):2709

    CAS  PubMed Central  Google Scholar 

  115. Huang L, Lin JS, Aris IM et al (2019) Circulating saturated fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Nutrients 11(5):998

    CAS  PubMed Central  Google Scholar 

  116. Avgerinos KI, Spyrou N, Mantzoros CS et al (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–135

    CAS  PubMed  Google Scholar 

  117. De Menezes EVA, Sampaio HADC, Carioca AAF et al (2019) Influence of paleolithic diet on anthropometric markers in chronic diseases: Systematic review and meta-analysis. Nutr J 18(1):41

    PubMed  PubMed Central  Google Scholar 

  118. Cho Y, Hong N, Kim KW et al (2019) The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: a systematic review and meta-analysis. J Clin Med 8(10):1645

    CAS  PubMed Central  Google Scholar 

  119. Pellegrini M, Cioffi I, Evangelista A et al (2020) Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev Endoc Metab Disord 21(1):17–33

    Google Scholar 

  120. Dinu M, Pagliai G, Angelino D et al (2020) Effects of popular diets on anthropometric and cardiometabolic parameters: an umbrella review of meta-analyses of randomized controlled trials. Adv Nutrition 11(4):815–833

    Google Scholar 

  121. Ma X, Chen Q, Pu Y et al (2020) Skipping breakfast is associated with overweight and obesity: a systematic review and meta-analysis. Obes Res Clin Pract 14(1):1–8

    PubMed  Google Scholar 

  122. Fardet A, Richonnet C, Mazur A (2019) Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: a systematic review of meta-analyses. Nutr Rev 77(6):376–387

    PubMed  Google Scholar 

  123. Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216(1):20–40

    Google Scholar 

  124. Fan Y, Pedersen O (2020) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol

    Google Scholar 

  125. Järbrink-Sehgal E, Andreasson A (2020) The gut microbiota and mental health in adults. Curr Opin Neurobiol 62:102–114

    PubMed  Google Scholar 

  126. Sanada K, Nakajima S, Kurokawa S et al (2020) Gut microbiota and major depressive disorder: a systematic review and meta-analysis. J Affect Disord 266:1–13

    CAS  PubMed  Google Scholar 

  127. Vivarelli S, Salemi R, Candido S et al (2019) Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11(1):38

    CAS  Google Scholar 

  128. Chellappa SL, Vujovic N, Williams JS et al (2019) Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol Metab 30(10):767–779

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Maury E (2019) Off the clock: from circadian disruption to metabolic disease. Int J Molec Sci 20(7):1597

    CAS  Google Scholar 

  130. Arranz S, Chiva-Blanch G, Valderas-Martínez P et al (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4(7):759–781

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wood AM, Kaptoge S, Butterworth A et al (2018) Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391(10129):1513–1523

    PubMed  PubMed Central  Google Scholar 

  132. Phillip JM, Aifuwa I, Walston J et al (2015) The mechanobiology of aging. Annu Rev Biomed Eng 17:113–141

    CAS  PubMed  PubMed Central  Google Scholar 

  133. World Health Organization (2018) Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Accessed 9 Sep 2020

  134. Beard JR, Officer A, de Carvalho IA et al (2016) The world report on ageing and health: a policy framework for healthy ageing. Lancet 387(10033):2145–2154

    PubMed  Google Scholar 

  135. Wellman NS, Kamp, BJ (2017) Nutrition on aging. In: Mahan LK, Raymond, JL (ed) Krause's food & the nutrition care process, 14th ed. Elsevier, St. Louis

    Google Scholar 

  136. Institute of Medicine (US) Food Forum (2010) Providing healthy and safe foods as we age: workshop Summary. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK51837/. Accessed 12 Sep 2020

  137. He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325

    Google Scholar 

  138. Hooper L, Martin N, Abdelhamid A et al (2015) Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev (6):CD011737

    Google Scholar 

  139. Rippe JM, Angelopoulos TJ (2016) Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients 8(11):697

    PubMed Central  Google Scholar 

  140. Aune D, Giovannucci E, Boffetta P et al (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46(3):1029–1056

    PubMed  PubMed Central  Google Scholar 

  141. Hu D, Huang J, Wang Y et al (2014) Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke 45(6):1613–1619

    CAS  PubMed  Google Scholar 

  142. Li B, Li F, Wang L et al (2016) Fruit and vegetables consumption and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich) 18(5):468–476

    Google Scholar 

  143. Li M, Fan Y, Zhang X et al (2014) Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 4 (11):e005497.

    Google Scholar 

  144. Guallar-Castillon P, Rodriguez-Artalejo F, Tormo MJ et al (2012) Major dietary patterns and risk of coronary heart disease in middle-aged persons from a Mediterranean country: the EPIC-Spain cohort study. Nutr Metab Cardiovasc Dis 22(3):192–199

    CAS  PubMed  Google Scholar 

  145. Stricker MD, Onland-Moret NC, Boer JM et al (2013) Dietary patterns derived from principal component- and k-means cluster analysis: long-term association with coronary heart disease and stroke. Nutr Metab Cardiovasc Dis 23(3):250–256

    CAS  PubMed  Google Scholar 

  146. Trichopoulou A, Critselis E (2004) Mediterranean diet and longevity. Eur J Cancer Prev 13(5):453–456

    CAS  PubMed  Google Scholar 

  147. Rees K, Takeda A, Martin N et al (2019) Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 3:CD009825

    Google Scholar 

  148. Hlebowicz J, Persson M, Gullberg B et al (2011) Food patterns, inflammation markers and incidence of cardiovascular disease: the Malmo diet and cancer study. J Intern Med 270(4):365–376

    CAS  PubMed  Google Scholar 

  149. Micha R, Wallace SK, Mozaffarian D (2010) Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121(21):2271–2283

    PubMed  PubMed Central  Google Scholar 

  150. US Department of Agriculture and U.S. Department of Health and Human Services (2010) Dietary Guidelines for Americans, 2010, 7th edn. Government Printing Office, U.S

    Google Scholar 

  151. Zhao Z, Li S, Liu G et al (2012) Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One 7 (7):e41641

    Google Scholar 

  152. World Cancer Research Fund / American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington DC

    Google Scholar 

  153. Jankovic N, Geelen A, Winkels RM et al (2017) Adherence to the WCRF/AICR dietary recommendations for cancer prevention and risk of cancer in elderly from Europe and the United States: a meta-analysis within the CHANCES project. Cancer Epidemiol Biomarkers Prev 26(1):136–144

    PubMed  Google Scholar 

  154. Mentella MC, Scaldaferri F, Ricci C et al (2019) Cancer and mediterranean diet: a review. Nutrients 11(9):2059

    PubMed Central  Google Scholar 

  155. Avenell A, Mak JC, O'Connell D (2014) Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev (4):CD000227

    Google Scholar 

  156. Siddique N, O’Donoghue M, Casey MC, Walsh JB (2017) Malnutrition in the elderly and its effects on bone health—a review. Clin Nutr ESPEN 21:31–39

    PubMed  Google Scholar 

  157. Movassagh EZ, Vatanparast H (2017) Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr 8(1):1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Silva R, Pizato N, da Mata F et al (2018) Mediterranean diet and musculoskeletal-functional outcomes in community-dwelling older people: a systematic review and meta-analysis. J Nutr Health Aging 22(6):655–663

    CAS  PubMed  Google Scholar 

  159. World Health Organization (2012) Dementia: a public health priority. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/75263/9789241564458_eng.pdf?sequence=1. Accessed 3 Sep 2020

  160. Wu L, Sun D (2017) Adherence to mediterranean diet and risk of developing cognitive disorders: an updated systematic review and meta-analysis of prospective cohort studies. Sci Rep 7:41317. https://doi.org/10.1038/srep41317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM et al (2019) The Mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—a review. Adv Nutr 10(6):1040–1065

    PubMed  PubMed Central  Google Scholar 

  162. Alonso-Pedrero L, Ojeda-Rodriguez A, Martinez-Gonzalez MA et al (2020) Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr 111(6):1259–1266

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curioni, C.C., da Silva, A.C.F., da Silva Pereira, A., Mocellin, M.C. (2022). The Role of Dietary Habits on Development and Progress of Risk Factors of Chronic Non-communicable Diseases. In: Kelishadi, R. (eds) Healthy Lifestyle. Integrated Science, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-85357-0_5

Download citation

Publish with us

Policies and ethics