Afzal, A., Goues, C.L., Hilton, M., Timperley, C.S.: A study on challenges of testing robotic systems. In: 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), pp. 96–107 (2020)
Google Scholar
Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 1–10. ACM, New York (2011)
Google Scholar
Bentley, P.J., Wakefield, J.P.: Generic evolutionary design. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 289–298. Springer, London (1998). https://doi.org/10.1007/978-1-4471-0427-8_31
CrossRef
Google Scholar
Blank, J., Deb, K.: Pymoo: multi-objective optimization in Python. IEEE Access 8, 89497–89509 (2020)
CrossRef
Google Scholar
Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 119–128. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056855
CrossRef
Google Scholar
Carroll, D.L.: Chemical laser modeling with genetic algorithms. AIAA J. 34(2), 338–346 (1996)
CrossRef
Google Scholar
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8
CrossRef
MATH
Google Scholar
Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., Wei, C.: A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 209–216. IEEE (2017)
Google Scholar
Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments. Mach. Learn. 3(2–3), 101–120 (1988)
Google Scholar
Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)
CrossRef
Google Scholar
Goh, C.K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain Environments, vol. 186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95976-2
CrossRef
MATH
Google Scholar
Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_23
CrossRef
Google Scholar
Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput. Surv. (CSUR) 52(2), 1–38 (2019)
CrossRef
Google Scholar
Mirjalili, S.: Genetic Algorithm. In: Mirjalili, S. (ed.) Evolutionary Algorithms and Neural Networks. Studies in Computational Intelligence, vol. 780, pp. 43–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1_4
CrossRef
MATH
Google Scholar
Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 793–800. Association for Computing Machinery, New York (2011)
Google Scholar
Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_22
CrossRef
Google Scholar
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
CrossRef
Google Scholar