Skip to main content

Nonlinear Robust Control for Quadrotor

  • Conference paper
  • First Online:
15th European Workshop on Advanced Control and Diagnosis (ACD 2019) (ACD 2019 2018)

Part of the book series: Lecture Notes in Control and Information Sciences - Proceedings ((LNCOINSPRO))

Included in the following conference series:

  • 589 Accesses

Abstract

In this paper, we consider the problem of tracking trajectory with a quadcopter, in presence of noise sensors while the efficiency of one of the four propellers is reduced during the course of the mission. To overcome this challenge, backstepping and hierarchical nonlinear controllers are designed. Mathematical control laws are well described to be easy to implement in experimental bench test quadrotors. Simulation results compare the ability of control laws to track the reference. Future work and directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L’Afflitto, A., Anderson, R.B., Mohammadi, K.: An Introduction to Nonlinear Robust Control for Unmanned Quadrotor Aircraft: How to Design Control Algorithms for Quadrotors Using Sliding Mode Control and Adaptive Control Techniques [Focus on Education]. IEEE Control Systems Magazine 38(3), 102–121 (2018)

    Article  Google Scholar 

  2. Drouot, A., Richard, E. and Boutayeb, M. (2013) ’Hierarchical backstepping-based control of a Gun Launched MAV in crosswinds: Theory and experiment’, Automatica, 25

    Google Scholar 

  3. Drouot, A., Richard, E., Boutayeb, M.: Hierarchical backstepping-based control of a Gun Launched MAV in crosswinds: Theory and experiment. Control Engineering Practice 25(1), 16–25 (2014)

    Article  Google Scholar 

  4. Witkowska, A., Tomera, M., Smierzchalski, R.: A backstepping approach to ship course control. Int. J. Appl. Math. Comput. Sci. 17(1), 73–85 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bouadi, H., Simoes, Cunha, S., Drouin, A, Mora-Camino, F. (2011) ’Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking’, 12th IEEE International Symposium on Computational Intelligence and Informatics,449-455

    Google Scholar 

  6. Massé, C., Gougeon, O., Nguyen, D. and Saussié, D. (2018) ’Modeling and Control of a Quadcopter Flying in a Wind Field: A Comparison Between LQR and Structured \(H_{\infty }\) Control Techniques’, in IEEE, ed. International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, Texas, USA,

    Google Scholar 

  7. Chingozha, T., Nyandoro, O.: Adaptive Sliding Backstepping Control of Quadrotor UAV Attitude. In: Preprints of the 19th World Congress, pp. 11043–11048. The International Federation of Automatic Control, Cape Town, South Africa. (2014)

    Google Scholar 

  8. Clark, A.: Small unmanned aerial systems comparative analysis for the application to coastal erosion monitoring. Elsevier 13, 175–185 (2017)

    Google Scholar 

  9. Dietrich, T. (April 2017) ’An Empirical Study on Generic Multicopter Energy Consumption Profiles’, IEEE, pp. 406-411

    Google Scholar 

  10. Drouot, A. (2013) ’Stratégies de commande pour la navigation autonome d’un drone projectile miniature’, thèse, Université de Lorraine

    Google Scholar 

  11. Imam, A. S. and Bicker, R. (2014) ’Quadrotor Comprehensive Identification from Frequency Responses ’, Scientific and Engineering Research, 5(2)

    Google Scholar 

  12. Argentin, L.M., Rezende, W.C., Santos, P.E., Agutar, R.A.: (2013) “PID, LQR and LQR-PID on a quadcopter platform’, in Informatics. Electronics & Vision (ICIEV) 17–18, 1–6 (May 2013)

    Google Scholar 

  13. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear Design of Adaptive Controllers for Linear Systems. IEEE Transactions on Automatic Control 39(4), 738–752 (1994)

    Article  MathSciNet  Google Scholar 

  14. Krstić, M., Kanellakopoulos, I. and Kokotović, P. (1995) Nonlinear and Adaptative Control Design

    Google Scholar 

  15. Ariffanan, M., Basri, M. Abdul Rashid, H and Danapalasingam, K.A. (2015) ’Nonlinear Control of an Autonomous Quadrotor Unmanned Aerial Vehicle using Backstepping Controller Optimized by Particle Swarm Optimization’, Journal of Engineering Science and Technology, 39 - 45

    Google Scholar 

  16. Nguyen, N. P. and Hong, S. K. (2019) ’Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs with a Total Loss of Actuator’, Energies

    Google Scholar 

  17. nhovakimgroup (2016) ’Human-Centered Robotic System Design - NICER Robotics EAGER NSF’, [online], https://www.youtube.com/watch?v=sjRNY07FKTg

  18. Burdziakowski, P. (2017) ’Low cost hexacopter autonomous platform for testing and developing photogrammetry technologies and intelligent navigation systems’, in Environmental Engineering’, Vilnius Lithuania, Vilnius Gediminas Technical University: 10th,

    Google Scholar 

  19. Robotics, A. (2016) https://www.ara-uas.com, [online], available]

  20. Selvaganapathy, S., Ilangumaran, A.: Design of Quadcopter for Aerial View and Organ Transportation Using Drone Technology. Asian Journal of Applied Science and Technology (AJAST) 1(2), 311–315 (2017)

    Google Scholar 

  21. Mehdi, S.B., Choe, R. and Hovakimyan, N. (2019) ’Collision Avoidance in Cooperative Missions: Bézier Surfaces for Circumnavigating Uncertain Speed Profiles’, Journal of Guidance, Control, and Dynamics

    Google Scholar 

  22. Tran, N. K. (2015) Modeling and Control of a Quadrotor in a Wind Field, unpublished thesis McGill University

    Google Scholar 

  23. Kumar Tripathi, V., Behera, L. and Verma, N. ( 2015 ) ’Design of Sliding mode and Backstepping Controllers for a Quadcopter’, in 39th National Systems Conference (NSC), Noida, India, 14-16 Dec. 2015, IEEE,

    Google Scholar 

  24. Fang, X., Wan, N., Jafarnejadsani, H., Sun, D., Holzapfel, F., Hovakimyan, N.: “Emergency Landing Trajectory Optimization for a Fixed-Wing UAV under Engine Failure’’, in AIAA SciTech Forum. San Diego, California (2019)

    Google Scholar 

  25. Zulu, A., John, S.: A review of control algorithms for autonomous quadrotors. Open journal of Applied Sciences 4(547–556), 547–556 (2014)

    Article  Google Scholar 

  26. Brossard J, Application of B Control to a Quadcopter, PhD thesis, École technologie sup érieure, Montr éal, Juin 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brossard, J., Hammami, M., Bensoussan, D. (2022). Nonlinear Robust Control for Quadrotor. In: Zattoni, E., Simani, S., Conte, G. (eds) 15th European Workshop on Advanced Control and Diagnosis (ACD 2019). ACD 2019 2018. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-85318-1_73

Download citation

Publish with us

Policies and ethics