Skip to main content

Dimensionality Reduction: Foundations and Applications in Clinical Neuroscience

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

  • 2461 Accesses

Abstract

Advancements in population neuroscience are spurred by the availability of large scale, open datasets, such as the Human Connectome Project or recently introduced UK Biobank. With the increasing data availability, analyses of brain imaging data employ more and more sophisticated machine learning algorithms. However, all machine learning algorithms must balance generalization and complexity. As the detail of neuroimaging data leads to high-dimensional data spaces, model complexity and hence the chance of overfitting increases. Different methodological approaches can be applied to alleviate the problems that arise in high-dimensional settings by reducing the original information into meaningful and concise features. One popular approach is dimensionality reduction, which allows to summarize high-dimensional data into low-dimensional representations while retaining relevant trends and patterns. In this paper, principal component analysis (PCA) is discussed as widely used dimensionality reduction method based on current examples of population-based neuroimaging analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Editorial. Daunting data. Nature. 2016;539:467–8.

    Google Scholar 

  2. Smith SM, Nichols TE. Statistical challenges in “big data” human neuroimaging. Neuron. 2018;97:263. https://doi.org/10.1016/j.neuron.2017.12.018.

    Article  PubMed  CAS  Google Scholar 

  3. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-minn human connectome project: an overview. NeuroImage. 2013;80:62. https://doi.org/10.1016/j.neuroimage.2013.05.041.

    Article  PubMed  Google Scholar 

  4. Thompson PM, Stein JL, Medland SE, et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014;8:153. https://doi.org/10.1007/s11682-013-9269-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jack CR, Barnes J, Bernstein MA, et al. Magnetic resonance imaging in Alzheimer’s disease neuroimaging initiative 2. Alzheimers Dement. 2015;11:740. https://doi.org/10.1016/j.jalz.2015.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weiner MW, Veitch DP, Aisen PS, et al. 2014 Update of the Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2015;11:e1. https://doi.org/10.1016/j.jalz.2014.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L. Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 2005;1:55. https://doi.org/10.1016/j.jalz.2005.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. https://doi.org/10.1371/journal.pmed.1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller KL, Alfaro-Almagro F, Bangerter NK, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016;19:1523. https://doi.org/10.1038/nn.4393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kernbach JM, Yeo BTT, Smallwood J, et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc Natl Acad Sci U S A. 2018;115(48):12295–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kiesow H, Dunbar RIM, Kable JW, Kalenscher T, Vogeley K, Schilbach L, Marquand AF, Wiecki TV, Bzdok D. 10,000 social brains: sex differentiation in human brain anatomy. Sci Adv. 2020;6:eaa1170. https://doi.org/10.1126/sciadv.aaz1170.

    Article  Google Scholar 

  12. Spreng RN, Dimas E, Mwilambwe-Tshilobo L, et al. The default network of the human brain is associated with perceived social isolation. Nat Commun. 2020;11(1):6393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16:199.

    Article  Google Scholar 

  14. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer; 2009.

    Book  Google Scholar 

  15. Abu-Mostafa YS, Malik M-I, Lin HT. Learning from data: a short course. Chicago, IL: AMLBook; 2012. https://doi.org/10.1108/17538271011063889.

    Book  Google Scholar 

  16. Alfaro-Almagro F, Jenkinson M, Bangerter NK, et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage. 2018;166:400. https://doi.org/10.1016/j.neuroimage.2017.10.034.

    Article  PubMed  Google Scholar 

  17. Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp. 2012;33:1914. https://doi.org/10.1002/hbm.21333.

    Article  PubMed  Google Scholar 

  18. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning with applications in R. New York, NY: Springer; 2013.

    Book  Google Scholar 

  19. Smith SM, Nichols TE, Vidaurre D, Winkler AM, Behrens TEJ, Glasser MF, Ugurbil K, Barch DM, Van Essen DC, Miller KL. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci. 2015;18:1565. https://doi.org/10.1038/nn.4125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Smith SM, Hyvärinen A, Varoquaux G, Miller KL, Beckmann CF. Group-PCA for very large fMRI datasets. NeuroImage. 2014;101:738. https://doi.org/10.1016/j.neuroimage.2014.07.051.

    Article  PubMed  Google Scholar 

  21. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23:137. https://doi.org/10.1109/TMI.2003.822821.

    Article  PubMed  Google Scholar 

  22. Lever J, Krzywinski M, Altman N. Points of significance: principal component analysis. Nat Methods. 2017;14:641. https://doi.org/10.1038/nmeth.4346.

    Article  CAS  Google Scholar 

  23. Hastie T, Tibshirani R, James G, Witten D. An introduction to statistical learning. New York, NY: Springer; 2006. https://doi.org/10.1016/j.peva.2007.06.006.

    Book  Google Scholar 

  24. Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso and generalizations. New York, NY: Chapman and Hall; 2015. https://doi.org/10.1201/b18401.

    Book  Google Scholar 

Download references

Acknowledgments and Disclosure

Funding

J.M.K. and D.D. are supported by the Bundesministerium für Bildung und Forschung (BMBF COMPLS3-022).

Conflicts of Interest/Competing Interests

None of the authors has any conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Kernbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kernbach, J.M., Ort, J., Hakvoort, K., Clusmann, H., Delev, D., Neuloh, G. (2022). Dimensionality Reduction: Foundations and Applications in Clinical Neuroscience. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics