Skip to main content

Is My Clinical Prediction Model Clinically Useful? A Primer on Decision Curve Analysis

Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA,volume 134)

Abstract

Decision curve analysis is an increasingly popular method to assess the impact of a prediction model on medical decision making. The analysis provides a graphical summary. A basic understanding of a decision curve is needed to interpret these graphics. This short introduction addresses the common features of a decision curve. Furthermore, using a glioblastoma patient set provided by the Machine Intelligence in Clinical Neuroscience Lab from the Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich a decision curve is plotted for two prediction models. The corresponding R code is provided.

Keywords

  • Net benefit
  • Decision curve analysis
  • Prediction model
  • Tutorial paper

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85292-4_15
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-85292-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2

References

  1. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21:128–38.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.

    CrossRef  Google Scholar 

  3. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

    CrossRef  PubMed  Google Scholar 

  4. van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E, Vickers AJ, Roolbol MJ, Steyerberg EW. Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol. 2018;74:796–804.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res. 2019;3:18.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. Berlin: Springer International Publishing; 2019.

    CrossRef  Google Scholar 

  7. Baker SG, Cook NR, Vickers A, Kramer BS. Using relative utility curves to evaluate risk prediction. J R Stat Soc Ser A Stat Soc. 2009;172:729–48.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. van Calster B, Vickers AJ, Pencina MJ, Baker SG, Timmerman D, Steyerberg EW. Evaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. Med Decis Mak. 2013;33:490–501.

    CrossRef  Google Scholar 

  9. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008;8:1039–17.

    CrossRef  Google Scholar 

  10. Vickers AJ, van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:i6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik-Jan Mijderwijk .

Editor information

Editors and Affiliations

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

1 Electronic Supplementary Material

Supplementary Material 15.1

R Code (DOCX 2054 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mijderwijk, HJ., Nieboer, D. (2022). Is My Clinical Prediction Model Clinically Useful? A Primer on Decision Curve Analysis. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)