Skip to main content

Overview of LiLAS 2021 – Living Labs for Academic Search

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2021)

Abstract

The Living Labs for Academic Search (LiLAS) lab aims to strengthen the concept of user-centric living labs for academic search. The methodological gap between real-world and lab-based evaluation should be bridged by allowing lab participants to evaluate their retrieval approaches in two real-world academic search systems from life sciences and social sciences. This overview paper outlines the two academic search systems LIVIVO and GESIS Search, and their corresponding tasks within LiLAS, which are ad-hoc retrieval and dataset recommendation. The lab is based on a new evaluation infrastructure named STELLA that allows participants to submit results corresponding to their experimental systems in the form of pre-computed runs and Docker containers that can be integrated into production systems and generate experimental results in real-time. Both submission types are interleaved with the results provided by the productive systems allowing for a seamless presentation and evaluation. The evaluation of results and a meta-analysis of the different tasks and submission types complement this overview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.livivo.de.

  2. 2.

    https://www.livivo.de//covid19.

  3. 3.

    https://search.gesis.org/.

  4. 4.

    https://datasetsearch.research.google.com/.

  5. 5.

    https://github.com/stella-project/stella-micro-template.

  6. 6.

    https://github.com/stella-project/stella-app.

  7. 7.

    https://lilas.stella-project.org/.

  8. 8.

    https://github.com/stella-project/stella-server.

  9. 9.

    https://github.com/stella-project/syntax_checker_CLI.

  10. 10.

    https://bitbucket.org/living-labs/ll-api/src/master/ll/core/interleave.py.

  11. 11.

    https://th-koeln.sciebo.de/s/OBm0NLEwz1RYl9N.

  12. 12.

    https://pypi.org/project/google-trans-new/.

  13. 13.

    https://github.com/stella-project/stella-evaluations.

  14. 14.

    https://github.com/stella-project/livivo_rank_pyserini.

  15. 15.

    https://github.com/stella-project.

References

  1. Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements that don’t add up: ad-hoc retrieval results since 1998. In: Proceeding of the 18th ACM conference on information and knowledge management, pp. 601–610. CIKM 2009, ACM, Hong Kong, China (2009). https://doi.org/10.1145/1645953.1646031

  2. Balog, K., Schuth, A., Dekker, P., Schaer, P., Tavakolpoursaleh, N., Chuang, P.Y.: Overview of the trec 2016 open search track. In: Proceedings of the Twenty-Fifth Text REtrieval Conference (TREC 2016). NIST (2016)

    Google Scholar 

  3. Breuer, T., Schaer, P.: A living lab architecture for reproducible shared task experimentation. In: Information between Data and Knowledge, Schriften zur Informationswissenschaft, vol. 74, pp. 348–362. Werner Hülsbusch, Glückstadt (2021). https://doi.org/10.5283/epub.44953

  4. Carevic, Z., Schaer, P.: On the connection between citation-based and topical relevance ranking: results of a pretest using iSearch. In: Proceedings of the First Workshop on Bibliometric-enhanced Information Retrieval co-located with 36th European Conference on Information Retrieval (ECIR 2014), Amsterdam, The Netherlands, 13 April 2014. CEUR Workshop Proceedings, vol. 1143, pp. 37–44. CEUR-WS.org (2014)

    Google Scholar 

  5. Gingstad, K., Jekteberg, Ø., Balog, K.: Arxivdigest: a living lab for personalized scientific literature recommendation. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E., Cudré-Mauroux, P. (eds.) CIKM 2020: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, 19–23 October 2020, pp. 3393–3396. ACM (2020). https://doi.org/10.1145/3340531.3417417

  6. Hienert, D., Kern, D., Boland, K., Zapilko, B., Mutschke, P.: A digital library for research data and related information in the social sciences. In: 19th ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019, Champaign, IL, USA, 2–6 June 2019, pp. 148–157 (2019). https://doi.org/10.1109/JCDL.2019.00030

  7. Jagerman, R., Balog, K., de Rijke, M.: Opensearch: lessons learned from an online evaluation campaign. J. Data Inf. Qual. 10, 1–15 (2018)

    Google Scholar 

  8. Keller, J., Munz, L.P.M.: Tekma at clef-2021: BM-25 based rankings for scientific publication retrieval and data set recommendation. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings (2021)

    Google Scholar 

  9. Lin, J., Ma, X., Lin, S., Yang, J., Pradeep, R., Nogueira, R.: Pyserini: an easy-to-use python toolkit to support replicable IR research with sparse and dense representations. CoRR abs/2102.10073 (2021)

    Google Scholar 

  10. Lommatzsch, A., Kille, B., Hopfgartner, F., Ramming, L.: Newsreel multimedia at mediaeval 2018: news recommendation with image and text content. In: Working Notes Proceedings of the MediaEval 2018 Workshop. CEUR-WS (2018)

    Google Scholar 

  11. Müller, B., Poley, C., Pössel, J., Hagelstein, A., Gübitz, T.: LIVIVO - the vertical search engine for life sciences. Datenbank-Spektrum 17(1), 29–34 (2017). https://doi.org/10.1007/s13222-016-0245-2

  12. Radlinski, F., Kurup, M., Joachims, T.: How does clickthrough data reflect retrieval quality? In: Shanahan, J.G., et al. (eds.) Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley, California, USA, 26–30 October 2008, pp. 43–52. ACM (2008). https://doi.org/10.1145/1458082.1458092

  13. Schaible, J., Breuer, T., Tavakolpoursaleh, N., Müller, B., Wolff, B., Schaer, P.: Evaluation infrastructures for academic shared tasks. Datenbank-Spektrum 20(1), 29–36 (2020). https://doi.org/10.1007/s13222-020-00335-x

  14. Schuth, A., Balog, K., Kelly, L.: Overview of the living labs for information retrieval evaluation (LL4IR) CLEF Lab 2015. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 484–496. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24027-5_47

    Chapter  Google Scholar 

  15. de Solla Price, D.J.: Little Science. Big Science. Columbia University Press, New York (1963)

    Google Scholar 

  16. Tavakolpoursaleh, N., Schaible, S.: Pyterrier-based research data recommendations for scientific articles in the social sciences. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings (2021)

    Google Scholar 

  17. Tran, A.H.M., et al.: Ad-hoc retrieval of scientific documents on the livivo search portal. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings (2021)

    Google Scholar 

Download references

Acknowledgments

This paper is supported by DFG (project no. 407518790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schaer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaer, P., Breuer, T., Castro, L.J., Wolff, B., Schaible, J., Tavakolpoursaleh, N. (2021). Overview of LiLAS 2021 – Living Labs for Academic Search. In: Candan, K.S., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2021. Lecture Notes in Computer Science(), vol 12880. Springer, Cham. https://doi.org/10.1007/978-3-030-85251-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85251-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85250-4

  • Online ISBN: 978-3-030-85251-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics