Skip to main content

Ecosystem Control: A Bottom-Up View

  • Chapter
  • First Online:
Evolution from a Thermodynamic Perspective
  • 720 Accesses

Abstract

Bottom-up control means species populations control energy flow through ecosystems as species respond to feedback by increasing or decreasing energy flow through their populations. Due to their response, energy flow through ecosystems changes. This changes energy flow back to species, so species must readjust to the continually changing flow of energy. Feedback occurs simultaneously and reciprocally between species and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Associated Press, Asian privet, other plants are invading more Georgia ground. (2018), https://www.wabe.org/asian-privet-other-plants-are-invading-more-georgia-ground/. Accessed 7 Dec 2020

  • A. Berryman, The origins and evolution of predator-prey theory. Ecology 73(5), 1530–1535 (1992)

    Article  Google Scholar 

  • N.S. Bolan, A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134(2), 189–207 (1991)

    Article  CAS  Google Scholar 

  • J.H. Connell, On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees, in Dynamics of Populations, ed. by P. J. Den Boer, G. R. Gradwell, (Wageningen Netherlands Center for Agricultural Publications, Wageningen, 1970), pp. 298–312

    Google Scholar 

  • E. Cuevas, S. Brown, A.E. Lugo, Above-and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 135, 257–268 (1991)

    Article  Google Scholar 

  • R.J. Curtis, T.M. Brereton, R.L.H. Dennis, C. Carbone, N.J.B. Isaac, Butterfly abundance is determined by food availability and is mediated by species traits. J. Appl. Ecol. 52(6), 1676–1684 (2015)

    Article  Google Scholar 

  • S.J. Diamond, R.H. Giles, R.L. Kirkpatrick, Hard mast production before and after the chestnut blight. South. J. Appl. For. 24(4), 196–201 (2000)

    Article  Google Scholar 

  • A. Fichtner, F. Schnabel, H. Bruelheide, M. Kunz, K. Mausolf, A. Schuldt, W. Härdtle, G. von Oheimb, Neighborhood diversity mitigates drought impacts on tree growth. J. Ecol. (2020). https://doi.org/10.1111/1365-2745.13353

  • D.G. Futuyma, M. Slatkin, Coevolution (Sinauer Associates, Sunderland, 1983)

    Google Scholar 

  • R.C. Gatti, A conceptual model of new hypothesis on the evolution of biodiversity. Biologia 2016, 71. (3) (2016). https://doi.org/10.1515/biolog-2016-0032

    Article  Google Scholar 

  • G. Gellner, K.S. McCann, Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nat. Commun. 7, 11180 (2016)

    Article  CAS  Google Scholar 

  • J.L. Harper, The contributions of terrestrial plant studies to the development of the theory of ecology, in The Changing Scenes in the Natural Sciences 1776–1976, Special Publication 12, ed. by C. E. Goulden, (Academy of Natural Sciences, Philadelphia, 1977), pp. 139–157

    Google Scholar 

  • D.U. Hooper, F.S. Chapin III, J.J. Ewel, et al., Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75(1), 3–35 (2005)

    Article  Google Scholar 

  • H.F. Howe, J. Smallwood, Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982)

    Article  Google Scholar 

  • Y. Huang, Y. Chen, N. Castro-Izaguirre, et al., Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362(6410), 80–83 (2018). https://doi.org/10.1126/science.aat6405

    Article  CAS  PubMed  Google Scholar 

  • A.M. Jordan, Trypanosomaisis Control and African Rural Development (Longman, London/New York, 1986)

    Google Scholar 

  • S.E. Jørgensen, B.D. Fath, Examination of ecological networks. Ecol. Model. 196(3, 4), 283–288 (2006). https://doi.org/10.1016/jecolmodel.2006.02.029

    Article  Google Scholar 

  • C. Keever, Distribution of major forest species in Southeastern Pennsylvania. Ecol. Monogr. 43, 303–327 (1973)

    Article  Google Scholar 

  • B.A. Kimball, F.D. Provenza Chemical defense and mammalian herbivores. USDA, National Wildlife Research Center – Staff Publications. 236. (2003), http://digitalcommons.unl.edu/icwdm_usdanwrc/236. Accessed 23 Dec 2020

  • C.J. Krebs, T. Boonstra, S. Boutin, A.R.E. Sinclair, What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25–35 (2001)

    Article  Google Scholar 

  • Learning About Rainforests, (2019). http://www.srl.caltech.edu/personnel/krubal/rainforest/Edit560s6/www/whlayers.html. Accessed 26 Dec 2020

  • R.L. Lindeman, The trophic-dynamic aspect of ecology. Ecology 23, 399–418 (1942). https://doi.org/10.2307/1930126

    Article  Google Scholar 

  • R.H. MacArthur, Fluctuations of animal populations, and a measure of community stability. Ecology 36, 53–536 (1955)

    Article  Google Scholar 

  • D.A. MacLulich, Fluctuations in the Numbers of the Varying Hare (Lepus Americanus), University of Toronto Studies Biological Series 43 (University of Toronto Press, Toronto, 1937)

    Book  Google Scholar 

  • F.M. Martin, M.J. Harrison, S. Lennon, B. Lindahl, M. Opik, A. Polle, N. Requenq, M. Selosse, Cross-scale integration of mycorrhizal function. New Phytol. 220(4), 941–946 (2018). https://doi.org/10.1111/nph.15493

    Article  PubMed  Google Scholar 

  • B.E. McLaren, R.O. Petersen, Wolves, moose and tree rings on Isle Royale. Science 266(5190), 1555–1558 (1994)

    Article  CAS  Google Scholar 

  • A. Mills, Two wolves remain on Ilse Royale. Michigan Tech News, April 19, 2016. (2016), https://www.mtu.edu/news/stories/2016/april/two-wolves-remain-isle-royale.html. Accessed 26 Dec 2020

  • A. Mougi, M. Kondoh, Diversity of interaction types and ecological community stability. Science 337(6092), 349–351 (2012)

    Article  CAS  Google Scholar 

  • K. Nadachowska-Brzyska, C. Li, L. Smeds, G. Zhang, H. Ellegren, Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015). https://doi.org/10.1016/j.cub.2015.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • B.D. Patten, The wealth of ecosystems. How invisible hands (organisms, autonomy, biodiversity, connectivity) mold biological and environmental fitness in the economy of nature. Ecol. Indic. 100, 4–10 (2019)

    Article  Google Scholar 

  • B.C. Patten, E.P. Odum, The cybernetic nature of ecosystems. Am. Nat. 118, 886–895 (1981)

    Article  Google Scholar 

  • B. Patterson, An army of beetles could save dying hemlock forests. (2016), https://www.scientificamerican.com/article/an-army-of-beetles-could-save-dying-hemlock-forests/. Accessed 30 Dec 2020

  • F. Pearce, Inventing Africa. New. Sci. 167(2251), 30 (2000)

    Google Scholar 

  • R.A. Pierce, E. Flinn, Potential diseases and parasites of white-tailed deer in Missouri. Extension, University of Missouri. (2018), https://extension2.missouri.edu/g9489. Accessed 30 Dec 2020

  • P. Quévreux, U. Brose, Metabolic adjustment enhances food web stability. Oikos 128(1), 54–63 (2018). https://doi.org/10.1111/oik.05422

    Article  Google Scholar 

  • L.B. Slobodkin, How to be a predator. Am. Zool. 8(1), 43–51 (1968)

    Article  Google Scholar 

  • C. Terrer, R.P. Phillips, A. Hungate, et al., A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021)

    Article  CAS  Google Scholar 

  • D. Tilman, J.A. Downing, Biodiversity and stability in grasslands. Nature 367, 363–365 (1994)

    Article  Google Scholar 

  • R. Trebilco, J.K. Baum, A.K. Salomon, N.K. Dulvy, Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol. Evol. 28(7), 423–431 (2013)

    Article  Google Scholar 

  • M. Vanni, J. Duncan, M. González, M.J. Horgan, Competition among Aquatic Organisms, in Encyclopedia of Inland Waters, ed. by G. E. Likens, vol. 1, (2009), pp. 395–404

    Chapter  Google Scholar 

  • W.S. Yackinous, Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective (Elsevier, Amsterdam, 2015)

    Google Scholar 

  • Z. Zhang, Z. Li, Factors affecting hare-lynx dynamics in the classic time series of the Hudson Bay, Canada. Clim. Res. 34(2), 83–89 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, C.F. (2022). Ecosystem Control: A Bottom-Up View. In: Evolution from a Thermodynamic Perspective. Springer, Cham. https://doi.org/10.1007/978-3-030-85186-6_6

Download citation

Publish with us

Policies and ethics