Skip to main content

A Thermodynamic View of Succession

  • 665 Accesses

Abstract

Succession can be defined as storage of entropy. Entropy means the disintegration of structure, so when structure is created, entropy is stored. Succession occurs as the autocatalytic reactions that promote maximum power output more than compensate for entropy that causes breakdown of structure. Ecological theory has been that power output of ecosystems increases during succession until biomass is maximum. Thermodynamic theory says that power output increases well beyond that point. The reason for the difference is that ecological theory has been based on field measurements that underestimate daytime photosynthesis and respiration. Night-time respiration has been used as a proxy for day-time respiration, because day-time respiration cannot be directly measured in the field. However, day-time respiration is much higher than night-time respiration, so day-time measurements of carbon dioxide exchange in leaves and forests has severely underestimated the magnitude of gross photosynthesis. The high amount of power output after the onset of maturity in plants is used for defense and for metabolism that increases stability. In ecosystems it is used to increase and support the food webs that help stabilize the ecosystems.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • G.P. Asner, J.M.O. Scurlock, J.A. Hicke, Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 12, 191–205 (2003)

    Google Scholar 

  • J.R. Banavar, T.J. Cooke, A. Rinaldo, A. Maritan, Form, function, and evolution of living organisms. PNAS 111(9), 3332–3337 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  • G. Bard, Secondary succession on the Piedmont of New Jersey. Ecol. Monogr. 22(3), 195–215 (1952)

    Google Scholar 

  • F.A. Bazzaz, Plants in Changing Environments (Cambridge University Press, New York, 1996)

    Google Scholar 

  • C.W. Benkman, Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in Pines. Oikos 73, 221–224 (1995)

    Google Scholar 

  • B.J. Bond, Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 5(8), 349–353 (2000)

    CAS  PubMed  Google Scholar 

  • F.H. Bormann, G.E. Likens, Pattern and Process in a Forested Ecosystem (Springer, New York, 1979)

    Google Scholar 

  • N.C. Brady, The Nature and Properties of Soils (Macmillan, New York, 1974)

    Google Scholar 

  • N.L. Christensen, R.K. Peet, Secondary forest succession on the North Carolina Piedmont, in Forest Succession: Concepts and Application, ed. by D. C. West, H. H. Shugart, D. B. Botkin, (Springer, New York, 1981), pp. 230–245

    Google Scholar 

  • F.E. Clements, Plant succession; an analysis of the development of vegetation (Carnegie Institution of Washington, Washington, DC, 1916)

    Google Scholar 

  • P.D. Coley, J.P. Bryant, F.S. Chapin, Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985)

    CAS  Google Scholar 

  • J.H. Connell, Diversity in tropical rain forests and coral reefs. Science 199(4335), 1302–1310 (1978)

    CAS  PubMed  Google Scholar 

  • J.H. Connell, R.O. Slatyer, Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111(982), 1119–1144 (1977)

    Google Scholar 

  • C.J. Dahlman, The problem of externality. J. Law Econ. 22(1), 141–162 (1979)

    Google Scholar 

  • J.S. Denslow, Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980)

    PubMed  Google Scholar 

  • W.H. Drury, I.C.T. Nisbet, Succession. J Arnold Arbor 54, 33–368 (1973)

    Google Scholar 

  • F.B. Golley, Ecological Succession: Benchmark Papers in Ecology, vol V. 5 (Hutchinson & RossPublishing Co. Stroudsburg Pennsylvania, Dowden, 1977)

    Google Scholar 

  • S. Grey, Weather resistance of cedar vs. redwood (2017), https://www.hunker.com/13401357/weather-resistance-of-cedar-vs-redwood. Accessed 19 Dec 2020

  • P. Gundersen, E.E. Thybring, T. Nord-Larsen, et al., Old-growth forest carbon sinks overestimated. Nature 591, E21–E23 (2021)

    PubMed  Google Scholar 

  • R.W. Halsey, In search of allelopathy: an eco-historical view of the investigation of chemical inhibition in California coastal sage scrub and chamise chaparral. J. Torrey Bot. Soc. 131(4), 343–367 (2004)

    Google Scholar 

  • S.P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, Princeton, 2001)

    Google Scholar 

  • S.P. Hubbell, Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005)

    Google Scholar 

  • Invasive.org, (2019), https://www.invasive.org/browse/subinfo.cfm?sub=3033. Accessed 21 Dec 2020

  • C.F. Jordan, Fire influence in old fields of the New Jersey Piedmont. Bull. NJ. Acad. Sci. 10, 7–12 (1965)

    Google Scholar 

  • C.F. Jordan, An Ecosystem Approach to Sustainable Agriculture: Energy Use Efficiency in the American South (Springer, Heidelberg, 2013)

    Google Scholar 

  • Joyce Kilmer Memorial Forest, (2020), https://www.blueridgeheritage.com/destinations/joyce-kilmer-memorial-forest/. Accessed 23 Dec 2020

  • A. Kleidon, Y. Malhi, P.M. Cox, Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B 365, 1297–1302 (2010). https://doi.org/10.1098/rstb.2010.0018

    Article  PubMed  PubMed Central  Google Scholar 

  • D. Lee, X.G. Han, C.F. Jordan, Soil phosphorus fractions, aluminum, and water retention as affected by microbial activity in an Ultisol. Plant Soil 121, 125–136 (1990)

    CAS  Google Scholar 

  • R.C.G. Mesquita, The effect of different proportions of canopy opening on the carbon cycle of a central Amazonian secondary forest. Dissertation, University of Georgia, Athens, Georgia, 1995

    Google Scholar 

  • F.J.R. Meysman, S. Bruers, Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Philos Trans R Soc Lond B Biol Sci 365, 1405–1416 (2010). https://doi.org/10.1098/rstb.2009.,0300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E.P. Odum, Organic production and turnover in old field succession. Ecology 41(1), 34–49 (1960)

    Google Scholar 

  • E.P. Odum, The strategy of ecosystem development. Science 164, 262–270 (1969)

    CAS  PubMed  Google Scholar 

  • H.T. Odum, Environment, Power and Society (Wiley, New York, 1971)

    Google Scholar 

  • E.P. Odum, J.T. Finn, E.H. Franz, Perturbation theory and the subsidy-stress gradient. Bioscience 29(3), 349–352 (1979a)

    Google Scholar 

  • E.P. Odum, J.T. Finn, E.H. Franz, Perturbation theory and the subsidy-stress gradient. Bioscience 29(3), 349–352 (1979b)

    Google Scholar 

  • B.M. O’Leary, C.P. Lee, O.K. Atkin, R. Cheng, T.B. Brown, A.H. Millar, Variation in leaf respiration rates at night correlates with carbohydrate and amino acid supply. Plant Physiol. 174(4), 2261–2273 (2017). https://doi.org/10.1104/pp.17.00610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R.K. Peet, Changes in biomass and production during secondary forest succession, in Forest Succession: Concepts and Application, ed. by D. C. West, H. H. Shugart, D. B. Botkin, (Springer, New York, 1981), pp. 324–338

    Google Scholar 

  • R.K. Peet, N.L. Christensen, Succession: A population process. Vegetatio 43, 131–140 (1980)

    Google Scholar 

  • D.L. Phillips, D.J. Shure, Patch-size effects on early succession in southern Appalachian Forests. Ecology 71(1), 204–212 (1990)

    Google Scholar 

  • S.T.A. Pickett, Succession: an evolutionary interpretation. Am. Nat. 110, 107–119 (1976)

    Google Scholar 

  • L. Poorter, M. van de Plassche, S. Williams, R.G.A. Boot, Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754 (2004)

    CAS  PubMed  Google Scholar 

  • E. Quarterman, C. Keever, Southern mixed hardwood forest: climax in the southeastern coastal plain. Ecol. Monogr. 32(2), 167–185 (1962)

    Google Scholar 

  • M.U. Rani, A. Reddy, G. Reddy, Screening of rhizobacteria containing plant growth rooting (PGPR) traits in rhizosphere soils and their role in enhancing growth of pigeon pea. Afr. J. Biotechnol. 11(32), 8085–8091 (2012)

    Google Scholar 

  • M. Salazar, M. Malumbres, Fueling the cell division cycle. Trends Cell Biol. 27(1), 69–81 (2017)

    Google Scholar 

  • R.A. Slattery, D.R. Ort, Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiol. 168(2), 383–392 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  • J. Tang, S. Luyssaert, A.D. Richardson, W. Kutsch, I.V. Janssens, Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. PNAS 111(24), 8856–8860 (2014). https://doi.org/10.1073/pnas.1320761111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R.A. Ulanowicz, Quantifying sustainable balance in ecosystem configurations. Curr. Res. Environ. Sustain. 1, 1–6 (2020). https://doi.org/10.1016/j.crsust.2019.09.001

    Article  Google Scholar 

  • P.M. Vitousek, W.A. Reiners, Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25(6), 376–381 (1975)

    CAS  Google Scholar 

  • P.M. Vitousek, P.S. White, Process studies in succession, in Forest Succession: Concepts and Application, ed. by D. C. West, H. H. Shugart, D. B. Botkin, (Springer, New York, 1981), pp. 266–276

    Google Scholar 

  • T.W. Walker, J.K. Syers, The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976)

    CAS  Google Scholar 

  • D. West, H.H. Shugart, D.B. Botkin, Forest Succession: Concepts and Application (Springer, New York, 1981)

    Google Scholar 

  • P.S. White, R.D. White, Old-growth oak and oak-hickory forests, in Eastern Old Growth Forests, ed. by M. B. Davis, (Island Press, Washington, DC, 1996), pp. 178–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, C.F. (2022). A Thermodynamic View of Succession. In: Evolution from a Thermodynamic Perspective. Springer, Cham. https://doi.org/10.1007/978-3-030-85186-6_10

Download citation

Publish with us

Policies and ethics