Abstract
We provide a procedure which partially extends Fulton’s intersection multiplicty algorithm to the general case, using a generalization of his seven properties. This procedure leads to a novel, standard basis free approach for computing intersection multiplicities beyond the case of two planar curves, which can cover cases the current standard basis free techniques cannot.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alvandi, P., Maza, M.M., Schost, É., Vrbik, P.: A standard basis free algorithm for computing the tangent cones of a space curve. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 45–60. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_4
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Mathematics, vol. 185. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-6911-1
Fulton, W.: Algebraic Curves - An Introduction to Algebraic Geometry (reprint from 1969). Addison-Wesley, Advanced book classics (1989)
Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-73542-7
Kaplansky, I.: Commutative Rings, 3rd edn. The University of Chicago Press, Chicago (1974). Ill.-London, revised edn
Marcus, S., Maza, M.M., Vrbik, P.: On Fulton’s algorithm for computing intersection multiplicities. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 198–211. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32973-9_17
Matsumura, H.: Commutative Algebra, Mathematics Lecture Note Series, vol. 56, 2nd edn. Benjamin/Cummings Publishing Co. Inc., Reading (1980)
McCoy, N.H.: Remarks on divisors of zero. Amer. Math. Mon. 49, 286–295 (1942). https://doi.org/10.2307/2303094
Vrbik, P.: Computing intersection multiplicity via triangular decomposition. Ph.D. thesis, The University of Western Ontario (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Moreno Maza, M., Sandford, R. (2021). Towards Extending Fulton’s Algorithm for Computing Intersection Multiplicities Beyond the Bivariate Case. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-85165-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85164-4
Online ISBN: 978-3-030-85165-1
eBook Packages: Computer ScienceComputer Science (R0)