Skip to main content

Digital Technologies and Industrial Transformations

  • Chapter
  • First Online:
Resilience and Digital Disruption

Abstract

Over the past few decades, ‘digital technology’ has shaped the so-called Third Industrial Revolution—the first in the nineteenth century being characterized by steam and water, and the second at the beginning of the twentieth century being based on electricity and the emergence of mass production. In his book, The Fourth Industrial Revolution, Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, suggests that it will be a further step in human production based on a complete integration between the cyber and physical dimensions. The fourth revolution has the potential to transform not only the way we produce and distribute things but also the dynamics of customer engagement, value creation, management, and regulation (Kagermann et al., 2013; Schwab, 2017a, 2017b). An historical account of the origins, history, and impact of cybernetics is beyond the scope and goals of this contribution (Ampère, 1843; Wiener, 1948a, 1948b; Simon, 1968). However, the idea of the new cyber-physical revolution or ‘Industry 4.0’ has been introduced, inspired by the transformations made in German manufacturing (Kagermann et al., 2013). Industry 4.0 has also been described as digital manufacturing, industrial Internet, smart industry, and smart manufacturing (Hermann et al., 2016; Nuccio & Guerzoni, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The research combines proprietary firm-level databases with publicly available information from company press releases, news articles, peer-reviewed journals, and trade and industry reports.

  2. 2.

    GPTs are technologies characterized by the potential of pervasive use in a wide range of sectors and are the ultimate trigger of technical-driven long-run growth (Bresnahan & Trajtenberg, 1995).

  3. 3.

    Respectively, about 194,000 fewer firms and 800,000 fewer workers than before the onset of the last crisis (ISTAT, 2017).

  4. 4.

    For a timeline of the economic globalization and details on the two unbundling waves, see Baldwin (2006, 2016).

  5. 5.

    Based on an analysis of the characteristics of technologies as described by the IPC system, the authors provide a conversion table mapping a set of key enabling technologies to the IPC codes. Robotics/automation technologies are identified by IPC codes: B03C, B06B 1/6, B06B 3/00, B07C, B23H, B23K, B23P, B23Q, B25J, G01D, G01F, G01H, G01L, G01M, G01P, G01Q, G05B, G05D, G05F, G05G, G06M, G07C, G08C, except for co-occurrence with sub-classes directly related to the manufacture of automobiles or electronics. Additional information, i.e. the list of IPC codes related to the manufacture of automobiles or electronics, is from Van Looy and Vereyen (2015).

  6. 6.

    For both periods, we consider the first year for which data are available. Moreover, we calculate a three-year moving average to smooth annual fluctuations.

References

  • Acemoglu, D., & Restrepo, P. (2017). Robots and jobs: Evidence from US labor markets.

    Google Scholar 

  • Ambrosetti, F., & Bruschera, C. L. (2017). Analisi di ciclo di vita di uno stack di celle a combustibile per applicazione automobilistica.

    Google Scholar 

  • Ampère, A. M. (1843). Essai sur la philosophie des sciences. Bachelier.

    Google Scholar 

  • Antonelli, C., Krafft, J., & Quatraro, F. (2010). Recombinant knowledge and growth: The case of ICTs. Structural Change and Economic Dynamics, 21(1), 50–69.

    Article  Google Scholar 

  • Arntz, M., Gregory, T., & Zierahn, U. (2016). The risk of automation for jobs in OECD countries: A comparative analysis. OECD Social, Employment, and Migration Working Papers, 189, 0_1.

    Google Scholar 

  • Aschhoff, B. Crass, D., Kremers, K., Grimpe, C., Rammer, C. (2010). European competitiveness in key enabling technologies: Summary Report to the European Commission. Retrieved from https://www.researchgate.net/profile/Carlos_Montalvo2/publication/271521098_European_Competitiveness_in_Key_Enabling_Technologies_Summary_Report/links/54cb3bf30cf2c70ce5252c15/European-Competitiveness-in-Key-Enabling-Technologies-Summary-Report.pdf

  • Babiceanu, R. F., & Chen, F. F. (2006). Development and applications of holonic manufacturing systems: A survey. Journal of Intelligent Manufacturing, 17(1), 111–131.

    Article  Google Scholar 

  • Baldwin, R. E. (2006). Globalisation: The great unbundling (s). Economic Council of Finland. https://doi.org/10.1017/S174413310600404X

    Book  Google Scholar 

  • Baldwin, R. E. (2016). The great convergence: Information technology and new globalization. Harvard University Press.

    Google Scholar 

  • Blinder, A. S., & Krueger, A. B. (2013). Alternative Measures of Offshorability: A Survey Approach. Journal of Labor Economics, University of Chicago Press, 31(S1), S97–S128.

    Google Scholar 

  • Boston Consulting Group. (2015). The robotics revolution: The next great leap in manufacturing. BCG Perspectives. Retrieved from BCG perspectives website: https://www.bcgperspectives.com

  • Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies ‘Engines of growth’? Journal of Econometrics, 65(1), 83–108.

    Article  Google Scholar 

  • Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37–44.

    Google Scholar 

  • Brzeski, C., & Burk, I. (2015). Die Roboter kommen. Folgen der Automatisierung für den deutschen Arbeitsmarkt. INGDiBa Economic Research.

    Google Scholar 

  • Calligaris, S., Del Gatto, M., Hassan, F., Ottaviano, G., & Schivardi, F. (2016). Italy’s productivity conundrum European Economy.

    Google Scholar 

  • Calvino, F., & Virgillito, M. E. (2018). The innovation-employment nexus: A critical survey of theory and empirics. Journal of Economic Surveys, 32(1), 83–117. https://doi.org/10.1111/joes.12190

    Article  Google Scholar 

  • Carlisle, B. (2000). Robot mechanisms. Adept Technology, Inc. In 2000 IEEE International Conference on Robotics & Automation, San Francisco, California.

    Google Scholar 

  • Coffano, M., Tarasconi, G. (2014). Crios InnoS&T Database: Sources, contents and access rules.. CRIOS Working paper N.1. Retrieved from SSRN http://ssrn.com/abstract=2404344

  • Dedrick, J., Gurbaxani, V., & Kraemer, K. L. (2003). Information technology and economic performance: A critical review of the empirical evidence. ACM Computing Surveys (CSUR), 35(1), 1–28.

    Article  Google Scholar 

  • Dengler, K., & Matthes, B. (2015). Folgen der Digitalisierung für die Arbeitswelt: Substituierbarkeitspotenziale von Berufen in Deutschland (No. 11/2015). IAB-Forschungsbericht.

    Google Scholar 

  • Deutsche Bank Research. (2014). Industry 4.0: Huge potential for value creation waiting to be tapped. Retrieved from: http://www.dbresearch.com

  • Dorn, D., Katz, L. F., Patterson, C., & Reenen, J. V. (2017). The fall of the labor share and the rise of superstar firms. CEP Discussion Papers, (1482). https://doi.org/10.1016/S2213-2600(17)30448-4.

  • Frey, C. B., & Osborne, M. A. (2013). The future of employment. How susceptible are jobs to computerisation.

    Google Scholar 

  • Gartner. (2012). Hype cycle for Big Data.

    Google Scholar 

  • Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference (pp. 289–294). IEEE.

    Google Scholar 

  • Helpman, E., & Trajtenberg, M. (1994). A time to sow and a time to reap: Growth based on general purpose technologies (No. w4854). National Bureau of Economic Research.

    Google Scholar 

  • Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industrie 4.0 scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference on (pp. 3928-3937). IEEE.

    Google Scholar 

  • ISTAT. (2016). Rapporto sulla competitività dei settori produttivi (Edizione 2016). ISTAT.

    Google Scholar 

  • ISTAT. (2017). Rapporto sulla competitività dei settori produttivi (Edizione 2017). ISTAT. https://doi.org/10.1002/2016GL072259

    Book  Google Scholar 

  • Jazdi, N. (2014, May). Cyber physical systems in the context of Industry 4.0. In Automation, Quality and Testing, Robotics, 2014 IEEE International Conference on (pp. 1-4). IEEE.

    Google Scholar 

  • Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 working group. Forschungsunion.

    Google Scholar 

  • Lee, J., Bagheri, B., & Kao, H. A. (2014). Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. International Proceeding of Int Conference on Industrial Informatics (INDIN), 1–6.

    Google Scholar 

  • Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  • Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979–991.

    Article  Google Scholar 

  • McKinsey Global Institute (2017) A future that works: Automation, employment, and productivity.

    Google Scholar 

  • Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13.

    Article  Google Scholar 

  • Nesta, L., & Schiavo, S. (2017). International competition and imperfect markets firm level evidence from French manufacturing firms.

    Google Scholar 

  • Nuccio, M., & Guerzoni, M. (2019). Big data: Hell or heaven? Digital platforms and market power in the data-driven economy. Competition & Change, 23(3), 312–328.

    Article  Google Scholar 

  • Nuccio, M., Guerzoni, M., Cappelli, R., & Geuna, A. (2020). Industrial pattern and robot adoption in European regions. Department of Management, Università Ca'Foscari Venezia Working Paper, 18, 3.

    Google Scholar 

  • Pajarinen, M., & Rouvinen, P. (2014). Computerization threatens one third of Finnish employment. ETLA Brief, 22(13.1), 2014.

    Google Scholar 

  • Pearson, J. (2015). The sheer difficulty of defining what a robot is. Vice Magazine. Retrieved from http://motherboard.vice.com/

  • Pĕchouček, M., & Mařík, V. (2008). Industrial deployment of multi-agent technologies: Review and selected case studies. Autonomous Agents and Multi-Agent Systems, 17(3), 397–431.

    Article  Google Scholar 

  • Perlongo, K. (2016). Robohub roundtable: Why is it so difficult to define ‘robot’?. Retrieved from http://robohub.org/

  • Rosen, R., von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48(3), 567–572.

    Article  Google Scholar 

  • Schwab, K. (2017). The fourth industrial revolution. Crown Business.

    Google Scholar 

  • Shen, W., Hao, Q., Yoon, H. J., & Norrie, D. H. (2006). Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced Engineering Informatics, 20(4), 415–431.

    Article  Google Scholar 

  • Simon, H. A. (1968). The sciences of the artificial. The MIT Press.

    Google Scholar 

  • Van Looy, B.,Vereyen, C. (2015). Patent statistics: Concordance IPC V8 – NACE REV.2. Retrieved from https://circabc.europa.eu/webdav/CircaBC/ESTAT/infoonstatisticsofsti/Library/methodology/patent_statistics/IPC_NACE2_Version2%200_20150630.pdf

  • Wang, L., Törngren, M., & Onori, M. (2015a). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37(Part 2), 517–527.

    Article  Google Scholar 

  • Wang, S., Wan, J., Li, D., & Zhang, C. (2015b). Implementing smart factory of industrie 4.0: An outlook. International Journal of Distributed Sensor Networks.

    Google Scholar 

  • Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for Industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158–168.

    Article  Google Scholar 

  • Wiener, N. (1948a). Cybernetics. Scientific American, 179(5), 14–19.

    Article  Google Scholar 

  • Wiener, N. (1948b). Cybernetics: Control and communication in the animal and in the machine. The MIT Press.

    Google Scholar 

  • Wilson, H. J. (2015). What is a robot, anyway? Harvard Business Review. Retrieved from http://hbr.org/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geuna, A., Guerzoni, M., Nuccio, M., Pammolli, F., Rungi, A. (2021). Digital Technologies and Industrial Transformations. In: Resilience and Digital Disruption. SpringerBriefs in Business. Springer, Cham. https://doi.org/10.1007/978-3-030-85158-3_2

Download citation

Publish with us

Policies and ethics