Skip to main content

Dynamics of Curved Flames Propagating in Tubes

  • Chapter
  • First Online:
Combustion Physics
  • 1235 Accesses

Abstract

A flame ignited at some location can propagate from the location where it was ignited either being confined by the walls of the vessel, or as a freely propagating flame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    G. Sivashinsky, private communication.

References

  1. Y.B. Zeldovich, An effect stabilizing the curved front of a laminar flame. Zh. Prikl. Mekh. Tekh. Fiz. 1, 102–104 (1966). ((in Russian))

    Google Scholar 

  2. G.H. Markstein, Experimental and theoretical studies of flame front stability. J. Aero. Sci. 18, 199–209 (1951)

    Article  Google Scholar 

  3. E. Mallard, H. Le Chatelier, Recherches Experimentales et Theoriques sur la Combustion des Melanges Gaseoux Explosifs. Ann. Mines 8, 274–568 (1883)

    Google Scholar 

  4. H.F. Coward, H.P. Greenwald, Propagation of flame in mixtures of natural gas and air. U.S. Bureau of Mines, Tech. Paper 427, 28 (1928)

    Google Scholar 

  5. H.F. Coward, F.J. Hartwell, Studies in the mechanism of flame movement. Part I. The uniform movement of flame in mixtures of methane and air, in relation to tube diameter. J. Chem. Soc. 1996–2004 (1932)

    Google Scholar 

  6. H.F. Coward, F.J. Hartwell, Studies in the mechanism of flame movement. Part II. The fundamental speed of flame in mixtures of methane and air. J. Chem. Soc. 2676–2684 (1932)

    Google Scholar 

  7. M.A. Liberman, M.F. Ivanov, O. Peil, D. Valiev, L.-E. Ericsson, Numerical modeling of flame propagation in wide tubes. Comb. Theory Modeling 7, 653–676 (2003)

    Article  ADS  Google Scholar 

  8. Y.A. Gostintsev, A.G. Istratov, Y.V. Shulenin, Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explos. Shock Waves 24, 563–569 (1989)

    Article  Google Scholar 

  9. G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  10. D.M. Michelson, G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-II. Num. Exper. Acta Astronaut. 4, 1207–1221 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. G.I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179–199 (1983)

    Article  ADS  Google Scholar 

  12. F. Sabathier, L. Boyer, P. Clavin, Experimental study of a weak turbulent premixed flame. Prog. Aeronaut. Astronaut. 76, 246–258 (1981)

    Google Scholar 

  13. J. Quinard, G. Searby, L. Boyer, Cellular structures on premixed flames in a uniform laminar flow. In “Cellular structures in instabilities", Lecture Notes in Physics, J.E. Weisfreid and S. Zaleski Ed., Springer Verlag, vol. 210, pp. 331–341 (1984)

    Google Scholar 

  14. G. Joulin, P. Cambray, On a tentative, approximate evolution equation for markedly wrinkled premixed flames. Combust. Sci. Technol. 81, 243–256 (1992)

    Article  Google Scholar 

  15. G.I. Sivashinsky, P. Clavin, On the nonlinear theory of hydrodynamic instability in flames. J. Phys. (Paris) 48, 193–198 (1987)

    Article  Google Scholar 

  16. C. Almarcha, B. Radisson, E. Al Sarraf, E. Villermaux., B. Denet, J. Quinard, Interface dynamics, pole trajectories, and cell size statistics. Phys. Rev. E. 98(1–5), 030202 (2018)

    Google Scholar 

  17. B. Radisson, B. Denet, C. Almarcha, Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence. J. Fluid Mech. 903(1–31), 903 A17 (2020)

    Google Scholar 

  18. O. Thual, U. Frish, M. Henon, Application of pole decomposition to an equation governing the dynamics of wrinkled flames. J. Phys. France 46, 1485–1494 (1985)

    Article  Google Scholar 

  19. K.A. Kazakov, M.A. Liberman, Effect of vorticity production on the structure and velocity of curved stationary flames. Phys. Rev. Letters. 88, 064502 (2002)

    Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987)

    Google Scholar 

  21. S.K. Zhdanov, B.A. Trubnikov, Nonlinear theory of instability of a flame front. J. Exp. Theor. Phys. 68, 65–78 (1989)

    ADS  Google Scholar 

  22. K.A. Kazakov, M.A. Liberman, Nonlinear equation for curved stationary flames. Phys. Fluids 14, 1166–1180 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. K.A. Kazakov, M.A. Liberman, Non-stationary nonlinear equation for a curved flame. Comb. Sci. Tech. 174, 157–179 (2002)

    Article  Google Scholar 

  24. K.A. Kazakov, On-shell description of stationary flames. Phys. Fluids. 17(1–15), 032107 (2005)

    Google Scholar 

  25. G. Joulin, H. El-Rabii, K.A. Kazakov, On-shell description of unsteady flames. J. Fluid Mech. 608, 217–242 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y.C. Lee, H.H. Chen, Nonlinear dynamical models of plasma turbulence. Phys. Scripta. 2, 41–47 (1982)

    Article  Google Scholar 

  27. M. Renardy, A model equation in combustion theory exhibiting an infinite number of secondary bifurcations. Physica. D. 28, 155–167 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Joulin, On the Zhdanov-Trubnikov equation for premixed flame instability. J. Exp. Theor. Phys. (Sov. Phys. JETP) 73, 234–236 (1991)

    Google Scholar 

  29. M. Rahibe, N. Aubry, G.I. Sivashinsky, Stability of pole solutions for planar propagating flames. Phys. Rev. E. 54, 4958–4972 (1996)

    Article  ADS  Google Scholar 

  30. M. Rahibe, N. Aubry, G.I. Sivashinsky, Instability of pole solutions for planar propagating flames in sufficiently large domains. Combust. Theory Modell. 2, 19–41 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Vaynblat, M. Matalon, Stability of pole solutions for planar propagating flames: I. Exact eigenvalues and eigenfunctions, SIAM J. Appl. Math. 60, 679–702 (2000). Stability of pole solutions for planar propagating flames: II. Properties of eigenvalues and eigenfunctions with implication to flame stability,” ibid. 60, 703–728 (2000)

    Google Scholar 

  32. V.V. Bychkov, S.M. Golberg, M.A. Liberman, L.E. Eriksson, Propagation of curved stationary flames in tubes. Phys. Rev. E. 54, 3713–3724 (1996)

    Article  ADS  Google Scholar 

  33. V.V. Bychkov, M.A. Liberman, On the dynamics of a curved deflagration front. J. Exp. Theor. Phys. 84, 281–288 (1997)

    Article  ADS  Google Scholar 

  34. O. Yu. Travnikov, V.V. Bychkov, M.A. Liberman, Numerical studies of flames in wide tubes: stability limits of curved stationary flames. Phys. Rev. E. 61, 468–474 (2000)

    Google Scholar 

  35. OYu. Travnikov, V.V. Bychkov, M.A. Liberman, Influence of compressibility on propagation of curved flames. Phys. Fluids 11, 2657–2666 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Liberman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liberman, M.A. (2021). Dynamics of Curved Flames Propagating in Tubes. In: Combustion Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-85139-2_8

Download citation

Publish with us

Policies and ethics