Skip to main content

Hydrodynamics of Premixed Laminar Flames

  • Chapter
  • First Online:
Combustion Physics
  • 1256 Accesses

Abstract

In many situations, a detailed scheme of chemical reactions are unnecessary and the hydrodynamics of the flame can be described satisfactory well using an accurate hydrodynamic model coupled to a one-step simplified irreversible reaction that converts the fresh fuel mixture to combustion products. When we talk about a flame, we mean, first of all, an ordinary chemical flame, a flame that can be observed in a laboratory, or fuel combustion in a car engine, combustion processes in industry, etc. Still, there are many other physical phenomena that possess very similar properties and may be called flames in a sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.H. Manheimer, D.G. Colombant, G.H. Gardner, Steady-state planar ablative flow. Phys. Fluids 25, 1644–1652 (1982)

    Article  ADS  Google Scholar 

  2. A.B. Bud’ko, M.A. Liberman, Suppression of the Rayleigh-Taylor instability by convection in ablatively accelerated laser target. Phys. Rev. Lett. 68, 178–181 (1992)

    Article  ADS  Google Scholar 

  3. V.V. Bychkov, S.M. Golberg, M.A. Liberman, Rayleigh-Taylor instability of combustion and laser produced ablation fronts. Phys. Fluids B 5, 3822–3824 (1993)

    Article  ADS  Google Scholar 

  4. V.V. Bychkov, S.M. Golberg, M.A. Liberman, Self-consistent theory of the Rayleigh-Taylor instability in ablatively accelerated laser plasma. Phys. Plasmas 1, 2976–2986 (1994)

    Article  ADS  Google Scholar 

  5. V.V. Bychkov, S.M. Golberg, M.A. Liberman, Growth of the Rayleigh-Taylor instabilities in an inhomogeneous ablative accelerated laser plasma. Sov. Phys. JETP 99, 1162–1185 (1991)

    Google Scholar 

  6. P. Clavin, L. Masse, Instabilities of ablation fronts in inertial confinement fusion: a comparison with flames. Phys. Plasmas 11, 690–705 (2004)

    Article  ADS  Google Scholar 

  7. R. Betti, V. Goncharov, R. McCrory, C. Verdon, Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas 3, 4665–4676 (1996)

    Article  ADS  Google Scholar 

  8. R. Betti, V. Goncharov, R. McCrory, C. Verdon, Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion. 5, 1446–1454 (1998)

    Google Scholar 

  9. J. Sanz, L. Masse, P. Clavin, The linear Darrieus-Landau and Rayleigh-Taylor instabilities in inertial confinement fusion revisited. Phys. Plasmas 13, 102702 (2006)

    Google Scholar 

  10. A. Piriz, R. Portugues, Landau-Darrieus instability in an ablation front. Phys. Plasmas 10, 2449–2456 (2003)

    Article  ADS  Google Scholar 

  11. S. Woosley, T. Weaver, The physics of supernova explosions. Annu. Rev. Astron. Astrophys. 24, 205–253 (1986)

    Article  ADS  Google Scholar 

  12. J.C. Niemeyer, W. Hillebrandt, Microscopic instabilities of nuclear flames in type Ia supernovae. Astrophys. J. 452, 769–784 (1995)

    Article  ADS  Google Scholar 

  13. V.V. Bychkov, M.A. Liberman, Thermal instability and pulsations of the flame front in white dwarfs. Astrophys. J. 451, 711–716 (1995)

    Article  ADS  Google Scholar 

  14. V.V. Bychkov, M.A. Liberman, Self-consistent theory of white dwarf burning in the supernova Ia events. Astrophys. Space Sci. 233, 287–292 (1995)

    Article  ADS  Google Scholar 

  15. K. Nomoto, K. Iwamoto, N. Kishimoto, Type Ia supernovae: their origin and possible applications in cosmology. Science 276, 1378–1382 (1997)

    Article  ADS  Google Scholar 

  16. V.V. Bychkov, M.A. Liberman, Flame instabilities and models of white dwarf burning, in “Thermonuclear Supernovae”, ed. by P. Ruiz-Lapuente, R. Canal, & J. Isern (Dordrecht: Kluwer, 1996), Conference on Thermonuclear Supernovae, NATO Institute for Advanced Science, (Aiguablava, Spain, June 20–30, 1995), pp. 379–388

    Google Scholar 

  17. V. Gamezo, A. Khokhlov, E. Oran, A. Chtchelkanova, R. Rosenberg, Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science 299, 77–81 (2003)

    Article  ADS  Google Scholar 

  18. S.E. Woosley, Type la supernovae: burning and detonation in the distributed regime. Astrophys. J. 668, 1109–1117 (2007)

    Google Scholar 

  19. F.K. Röpke, J.C. Niemeyer, Delayed detonations in full-star models of type Ia supernova explosions. Astron. & Astrophys. 464, 683–686 (2007). https://doi.org/10.1051/0004-6361:20066585

    Article  ADS  Google Scholar 

  20. M. Fink, M. Kromer, W. Hillebrandt, F.K. Röpke, R. Pakmor, I.R. Seitenzahl, S.A. Sim, Thermonuclear explosions of rapidly differentially rotating white dwarfs: candidates for superluminous type Ia supernovae? Astron. & Astrophys. 618, A124 (2018)

    Google Scholar 

  21. A. Tanikawa, K. Nomoto, N. Nakasato, Three-dimensional simulation of double detonations in the double-degenerate model for type Ia supernovae and interaction of ejecta with a surviving white dwarf companion. Astrophys. J. 868, 12–90 (2018)

    Google Scholar 

  22. M.A. Liberman, A.T. Rakhimov, Hydrodynamic instability of the high frequency gas discharge. Phys. Lett. 38A, 61–63 (1972)

    Article  ADS  Google Scholar 

  23. D.L. Turcotte, R.S.B. Ong, The structure and propagation of ionizing wave fronts. J. Plasma Phys. 2, 145–155 (1968)

    Article  ADS  Google Scholar 

  24. A.N. Lagarkov, I.M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York Berlin Heidelberg, 1994)

    Book  Google Scholar 

  25. I. Rutkevich, Two-dimensional instability of fast ionization waves propagating in an external electric field. Phys. Plasmas 5, 3054–3064 (1998)

    Article  ADS  Google Scholar 

  26. U. Ebert, W. van Saarloos, C. Caroli, Propagation and structure of planar streamer fronts. Phys. Rev. E 55, 1530–1549 (1997)

    Article  ADS  Google Scholar 

  27. P. Rodin, U. Ebert, A. Minarsky, I. Grekhov, Theory of superfast fronts of impact ionization in semiconductor structures. J. Appl. Phys. 102, 034508 (2007)

    Google Scholar 

  28. Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Consultants Bureau, New York, 1985)

    Book  Google Scholar 

  29. M. Liberman, A. Velikovich, Physics of Shock Waves in Gases and Plasmas (Springer-Verlag, Berlin - New York, 1985)

    MATH  Google Scholar 

  30. V.V. Bychkov, M.A. Liberman, On the stability of a flame in a closed chamber. Phys. Rev. Lett. 78, 1371–1734 (1997)

    Article  ADS  Google Scholar 

  31. Y.B. Zel’dovich, D.A. Frank-Kamenetski, A theory of thermal propagation of flame. Acta Physicochimica. 9, 341–350 (1938)

    Google Scholar 

  32. E. Mallard, H. Le Chatelier, Recherches Experimentales et Theoriques sur la Combustion des Melanges Gaseoux Explosifs. Ann. Mines 8, 274–568 (1883)

    Google Scholar 

  33. M.A. Liberman, V.V. Bychkov, S.M. Golberg, D. Book, Stability of a planar flame front in the slow-combustion regime. Phys. Rev. E 49, 445–457 (1994)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Liberman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liberman, M.A. (2021). Hydrodynamics of Premixed Laminar Flames. In: Combustion Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-85139-2_4

Download citation

Publish with us

Policies and ethics