Skip to main content

Combustion Chemistry

  • Chapter
  • First Online:
Combustion Physics
  • 1287 Accesses

Abstract

From the very beginning of combustion research, it was understood that the chemical reactions of the combustion process consist of the oxidation of fuel. For example, it was clear that when hydrogen–oxygen is burned, water is formed, and when methane–oxygen is burned, water and carbon dioxide are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Temperature dependence of the rate coefficient (3.1.8) had been suggested by Jacobus Van’t Hoff (the first winner of Nobel Prize in Chemistry, 1901). Svante Arrhenius (received Nobel Prize in Chemistry, 1903) has given theoretical explanation and formulated the concept of activation energy.

References

  1. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, vol. 5 (Pergamon Press, Oxford, Statistical Physics, 1989)

    Google Scholar 

  2. J.O. Hirschfelder, C.F. Gurtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, NewYork, 1964)

    Google Scholar 

  3. S.A. Arrhenius, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1989)

    Google Scholar 

  4. A.N. Hayhurst, I.M. Vince, Nitric oxide formation from N2 in flames: The importance of “prompt” NO. Prog. Energy Combust. Sci. 6, 35–51 (1980)

    Article  Google Scholar 

  5. J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338 (1989)

    Article  Google Scholar 

  6. J.C. Kramlich, W.P. Linak, Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Prog. Energy Combust. Sci. 20, 149–202 (1994)

    Article  Google Scholar 

  7. S.C. Hill, L.D. Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 26, 417–458 (2000). https://doi.org/10.1016/S0360-1285(00)00011-3

    Article  Google Scholar 

  8. P. Glarborga, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67, 31–68 (2018)

    Article  Google Scholar 

  9. Ya. B. Zel'dovich, The oxidation of nitrogen in combustion explosions. Acta Physicochimica U.S.S.R. 21, 577–628 (1946)

    Google Scholar 

  10. Ya.B. Zeldovich, D.A. Frank-Kamenetskii, P. Sadovnikov, oxidation of nitrogen in combustion. Published. Acad. Sci. USSR (1947)

    Google Scholar 

  11. Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical theory of combustion and explosions. Science Publ. Moscow, 1980 (in Russian). English translation: Consultants Bureau, New York (1985).

    Google Scholar 

  12. C.P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames, in Symposium (International) on Combustion, vol 13, pp. 373–380 (1971).

    Google Scholar 

  13. D.W. Pershing, O.L. Wendt, Relative contributions of volatile nitrogen and char nitrogen to NOx emissions from pulverized coal flames. Ind. Eng. Chem. Process. Des. Dev. 18, 60–67 (1979)

    Article  Google Scholar 

  14. C.T. Bowman, Kinetics of nitric oxide formation in combustion processes, in Proceedings of Fourteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA (1973). pp. 729–738.

    Google Scholar 

  15. C.T. Bowman, Kinetics of pollutant formation and destruction in combustion. Prog. Energy Combust. Sci. 1, 33–45 (1975)

    Article  Google Scholar 

  16. G.A. Lavoie, J.B. Heywood, J.C. Keck, Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol. 1, 313–326 (1970)

    Article  Google Scholar 

  17. J.F. Driscoll, R.H. Chen, Y. Yoon, Nitric oxide levels of turbulent jet diffusion flames: effects of varying residence time and Damköhler number Combust. Flame 88, 37–49 (1992)

    Article  Google Scholar 

  18. C. Morely, The formation and destruction of hydrogen cyanide from atmospheric and fuel nitrogen in rich atmospheric-pressure flames Combust. Flame 27, 189–204 (1976)

    Article  Google Scholar 

  19. L.V. Moskaleva, M.C. Lin, The spin-conserved reaction CH: a major pathway to prompt NO studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proc. Combust. Inst. 28, 2393–2401 (2000)

    Article  Google Scholar 

  20. A.A. Konnov, On the relative importance of different routes forming in hydrogen flames. Combust Flame 134, 421–424 (2003)

    Article  Google Scholar 

  21. Q. Cui, K. Morokuma, J.M. Bowman, S.J. Klippenstein, The spin-forbidden reaction CH(2Π)+N2→HCN+N(4S) revisited. II. Nonadiabatic transition state theory and application. J. Chem. Phys. 110 (1999) pp. 9469–9482

    Google Scholar 

  22. B.A. Williams, J.W. Fleming, Experimental and modeling study of formation in 10 torr methane and propane flames: evidence for additional prompt- precursors. Proc. Combust. Inst. 31, 1109–1117 (2007)

    Article  Google Scholar 

  23. F.H.V. Coppens, J. De Ruyck, A.A. Konnov, The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of + + +. Combust. Flame 149, 409–417 (2007)

    Article  Google Scholar 

  24. A.A. Konnov, On the role of radicals in the prompt- mechanism. Combust. Expl. Shock Waves 44, 497–501 (2008)

    Article  Google Scholar 

  25. A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame 156, 2093–2105 (2009)

    Article  Google Scholar 

  26. D.L. Baulch, D.D. Drysdale, D.G. Home, A.C. Lloyd, Evaluated kinetic data for high temperature reactions. Butterworths, London 1, 2 (1973)

    Google Scholar 

  27. D.L. Baulch, C.G. Cobos, R.A. Cox, P. Frank, G. Hayman, T.H. Just, J.A. Kerr, T. Murrells, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, Summary table of evaluated kinetic data for combustion modeling. Combust. Flame 98, 59–79 (1994)

    Article  Google Scholar 

  28. D.L. Baulch, C.T. Bowman, C.G. Cobos, R.A. Cox, T.H. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, Evaluated kinetic data for combustion modeling: supplement II. J. Phys. Chem. Ref. Data 34, 757–1397 (2005)

    Article  ADS  Google Scholar 

  29. R.K. Hanson, S. Salimian, Survey of rate constants in the N-H-O system, in Combustion Chemistry, ed. by W.C. Gardiner, Jr (Springer-Verlag, NY, 1984).

    Google Scholar 

  30. W. Tsang, J.T. Herron, Chemical Kinetic Data Base for Propellant Combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O. J. Phys. Chem. Ref. Data 20, 609–663 (1991)

    Google Scholar 

  31. J. Warnatz, Rate coefficients in the C-H-O system, in Combustion Chemistry, ed. by W.C. Gardiner Jr (Springer, NY, 1984)

    Google Scholar 

  32. R.J. Kee, E.M. Rupley, J.A. Miller, Chemkin-II: a fortan chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories Report. SAND898009 (1990)

    Google Scholar 

  33. D. De Soete, Overall reaction rate of and formation from fuel nitrogen, in Fifteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA (1975). pp. 1093–1102

    Google Scholar 

  34. P. Glarborg, P.G. Kristensen, K. Dam-Johansen, J.A. Miller, Branching fraction of the reaction between 1210 and 1370 K. J. Phys. Chem. A 101, 3741–3745 (1997)

    Article  Google Scholar 

  35. P. Glarborg, K. Dam-Johansen, and J.A. Miller. The reaction of ammonia with nitrogen dioxide in a flow reactor: implications for the reaction. Int. J. Chem. Kinet. 27, 1207–1220 (1995)

    Google Scholar 

  36. J.A. Miller, P. Glarborg, Modeling the formation of and in the Thermal De-NOx process. Springer Ser. Chem. Phys. 61, 318–333 (1996)

    Article  Google Scholar 

  37. J. A. Miller and P. Glarborg. Modeling the Thermal DeNOx process: Closing in on a final solution. Int. J. Chem. Kinet. 31, 757765 (1999)

    Google Scholar 

  38. N.N. Semenov, Chain Reactions, Goskhimtekhizdat, Leningrad, 1934 (Chemical Kinetics and Chain Reactions, Oxford University Press, Oxford, English Translation, 1935)

    Google Scholar 

  39. C.N. Hinshelwood, The Kinetics of Chemical Change (Oxford University Press, Oxford, 1940)

    Google Scholar 

  40. U. Maas, J. Warnatz, Ignition processes in hydrogen-oxygen mixtures. Combust. Flame 74, 53–69 (1988)

    Article  Google Scholar 

  41. G.J. Minkoff, C.F.H. Tipper, Chemistry of Combustion Reactions (Butterworth, London, 1962)

    Google Scholar 

  42. F.W. Williams, R.S. Sheinson, Manipulation of cool and blue flames in the winged vertical tube reactor. Combust. Sci. Technol. 7, 85–92 (1973)

    Article  Google Scholar 

  43. J. Warnatz, in Combustion Chemistry, ed. by W. C. Gardiner , Jr (Springer, New York, 1984).

    Google Scholar 

  44. M. Frenklach, H. Wang, M.J. Rabinowit, Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane. Prog. Energy Combust. Sci. 18, 47–73 (1992)

    Article  Google Scholar 

  45. T.B. Hunter, H. Wang, T.A. Litzinger, M. Frenklach, The oxidation of methane at elevated pressures: experiments and modeling. Combust. Flame 97, 201–224 (1994)

    Article  Google Scholar 

  46. P. Dagaut, J.C. Boettner, M. Cathonnet, Methane oxidation: experimental and kinetic modeling study. Combust. Sci. Technol. 77, 127–148 (1991)

    Article  Google Scholar 

  47. P. Dagaut, M. Cathonnet, J.C. Boettner, F. Guillard, Kinetic modeling of propane oxidation. Combust. Sci. Technol. 56, 23–63 (1987)

    Article  Google Scholar 

  48. M. Cathonnet, Chemical kinetic modeling of combustion from 1969 to 2019, Combust. Sci. Technol. 98, 265–279 (1994)

    Google Scholar 

  49. M. Nehse, J.Warnatz, C. Chevalier, Kinetic modeling of the oxidation of large aliphatic hydrocarbons, in Symposium (International) on Combustion, vol 26 (1996). pp. 773–780

    Google Scholar 

  50. J.A. Sutton, B.A. Williams, J.W. Fleming, Investigation of NCN and prompt-NO formation in low-pressure C1–C4 alkane flames. Combust. Flame 159, 562–576 (2012)

    Article  Google Scholar 

  51. J.A. Miller, M.J. Pilling, J. Troe, Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30, 43–88 (2005)

    Article  Google Scholar 

  52. C. K. Westbrook, W. J. Pitz, O.r Herbinet, H. J. Curran, E. J. Silke. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame, Elsevier 156, 181–199 (2008)

    Google Scholar 

  53. I. Glassman, R.A. Yetter, Combustion, 4th edn (Elsevier, 2008)

    Google Scholar 

  54. H.J. Curran, Developing detailed chemical kinetic mechanisms for fuel combustion. Proceed. Combust. Institute 37, 57–81 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Liberman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liberman, M.A. (2021). Combustion Chemistry. In: Combustion Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-85139-2_1

Download citation

Publish with us

Policies and ethics