Skip to main content

Potential Drug Strategies to Target Coronaviruses

  • Chapter
  • First Online:
Coronavirus Therapeutics – Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1352))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3CLpro:

Chymotrypsin-like protease

ACE2:

Angiotensin converting enzyme 2

Ang II:

Angiotensin II

COVID19:

Coronavirus disease of 2019

CREB1:

CAMP responsive element binding protein 1

CTL:

Cytotoxic T lymphocytes

DMVs:

Double-membrane vesicles

DPP4:

Dipeptidyl-peptidase 4

ERGIC:

Endoplasmic reticulum Golgi intermediate compartment

G-CSF:

Granulocyte colony-stimulating factor

HCoV-229E:

Human coronavirus 229E

HKU1:

Human coronavirus HKU1

HMG CoA:

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase

IL-10:

Interleukin 10

IMP α/β:

Importin α/β

IP-10:

Interferon gamma-induced protein 10 (also known as CXC motif chemokine 10 or CXCL10)

MCP-1:

The monocyte chemoattractant protein-1

MERS:

Middle East respiratory syndrome

MIP-1A:

Macrophage Inflammatory Proteins 1A

Mpro:

Main protease

mTOR:

Mammalian target of rapamycin

MβCD:

Methyl-β-cyclodextrin

NL63:

Human coronavirus NL63

NNIs:

Non-nucleoside inhibitors

Nsp:

Non-structural proteins

OC43:

Human coronavirus OC43

ORF1a:

Open reading frame 1a

p53:

Tumor suppressor p53

PLpro:

Papain-like protease

RaTG13:

Bat coronavirus RaTG13

RBD:

Receptor binding domain

RdRp:

RNA dependent RNA polymerase

RTC:

Replicase–transcriptase complex

SARS:

Severe acute respiratory syndrome

SMAD4:

Mothers against decapentaplegic homolog 4

STST1:

Signal transducer and activator of transcription 1

TLR:

Toll like receptor

TMPRSS11D:

Transmembrane protease, serine 11D

TMPRSS2:

transmembrane protease serine 2

References

  • Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F (2020) The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci 21:3544. https://doi.org/10.3390/ijms21103544

    Article  CAS  PubMed Central  Google Scholar 

  • Adedeji AO, Marchand B, Te Velthuis AJ, Snijder EJ, Weiss S, Singh K, Sarafianos SG (2012) Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One 7:e36521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ (2013) Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles. MBio 4(4):–e00524, 13

    Google Scholar 

  • Becker GL et al (2012) Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 287(26):21992–22003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boettler T, Newsome P, Mondelli M, Maticic M, Cordero E, Cornberg M, Berg T (2020) Care of patients with the liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Report 2(3):100–113

    Google Scholar 

  • Briguglio I, Piras S, Corona P, Carta A (2011) Inhibition of RNA helicases of ssRNA (+) virus belonging to flaviviridae, coronaviridae and picornaviridae families. Int J Med Chem 213135. https://doi.org/10.1155/2011/213135

  • Buchkovich NJ, Yu Y, Zampieri CA et al (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signaling pathway. Nat Rev Microbiol 6:266–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bukreyev A, Lamirande E, Buchholz U, Vogel L, Elkins W, St Claire M et al (2004) Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of. SARS Lancet 363:2122e7

    Google Scholar 

  • Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G (2020) Statin therapy in COVID-19 infection. European Heart Journal – Cardiovascular Pharmacotherapy. https://doi.org/10.1093/ehjcvp/pvaa042

  • Chan L, Das SK, Reddy TJ, Poisson C, Proulx M, Pereira O, Courchesne M, Roy C, Wang W, Siddiqui A (2004) Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: sulfonamides. Bioorg Med Chem Lett 14:793–796

    Article  CAS  PubMed  Google Scholar 

  • Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39(5):529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liang W, Yang S et al (2013) Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterization of viral genome. Lancet 381(9881):1916–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Zhou M, Dong X et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK (2020) Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (CoV-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents:34(2)

    Google Scholar 

  • Cooray S (2004) The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 85:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Coutard B, Valle C, Lamballerie X, Canard B, Seidah NG, Decroly E (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 176:104742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S (2009) The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 7:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L (2016) Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3(1):237–261. https://doi.org/10.1146/annurev-virology-110615-042301

    Article  CAS  Google Scholar 

  • Folegatti PM, Bittaye M, Flaxman A, Lopez FR et al (2020) Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30160-2

  • Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81(18):9812–9824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989) Cysteine proteases of positive-strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114

    Article  CAS  PubMed  Google Scholar 

  • Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27:119–129

    Article  CAS  PubMed  Google Scholar 

  • Guillen E, Pineiro GJ, Revuelta I, Rodriguez D, Bodro M, Moreno A, Campistol J, Diekmann F, Ventura-Aguiar P (2020) 2020. Case report of COVID-19 in a kidney transplant recipient: does immunosuppression alter the clinical presentation? Am J Transplant 00:1–4

    Google Scholar 

  • Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, Nabavi SM (2020) Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Archives of Medical Research. https://doi.org/10.1016/j.arcmed.2020.05.024

    Book  Google Scholar 

  • Heidary F, Gharebaghi R (2020) Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot

    Google Scholar 

  • Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–784.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • https://www.who.int/

  • Huang KJ, Su IJ, Theron M et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huentelman MJ, Zubcevic J, Hernández Prada JA, Xiao X, Dimitrov DS, Raizada MK, Ostrov DA (2004) Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 44(6):903–906

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Gallagher T (2010) SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus. Virus Res 153(2):299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Z. J. N. a. r. Lou (2019) Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 47(12):6538–6550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapadia SU, Rose JK, Lamirande E, Vogel L et al (2005) Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340:174e82

    Article  CAS  Google Scholar 

  • Kato T, Takami Y, Deo VK, Park EY (2019) Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol 306:177e84

    Article  CAS  Google Scholar 

  • Khungar V, Han SH (2010) A systematic review of side effects of nucleoside and nucleotide drugs used for treatment of chronic hepatitis B. Curr Hepat Rep 9(2):75–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindrachuk J, Ork B, Hart B, Mazur S, Holbrook M, Frieman M, Traynor D, Johnson R, Dyall J, Kuhn J, Olinger G, Hensley L, Jahrling P (2015) Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 59(2):1088–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledford H. Coronavirus breakthrough: dexamethasone is the first drug shown to save lives. Nature news, 2020.; https://www.nature.com/articles/d41586-020-01824-5

  • Lee F, Ng MY, Khong PL (2020) COVID-19 pneumonia: what has CT taught us? The lancet. Infect Dis 20(4):384–385

    CAS  Google Scholar 

  • Li X, Luk HKH (2019) Human Coronaviruses: General Features. Reference Module in Biomedical Sciences, B978-0-12-801238-3.95704-0

  • Li AGM, Li YG, Yamate M, Li SM, Ikuta K (2007) Lipid rafts play an important role in the early stage of the severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect 9(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang XJ (2020) Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 47(2):119–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J et al. Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage. MedRxiv2020.02.10.20021584 Preprint. https://doi.org/10.1101/2020.02.10.20021584

  • Lu R et al (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundin A, Dijkman R, Bergstro T, Kann N, Adamiak B, Hannoun C, Kindler E, Hulda R, Nsdo’ttir JO, Muth D, Kint J, Forlenza M, Muller M, Drosten C, Thiel V, Trybala E (2014) Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus. PLoS Pathog 10(5):e1004166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markus H et al (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181(2):271–280.e8

    Article  Google Scholar 

  • Mousavizadeh L, Ghasemi S (2020) Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2020.03.022

  • Muthumani K, Falzarano D, Reuschel E, Tingey C, Flingai S, Villarreal D (2015) A synthetic onsensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 7

    Google Scholar 

  • Naicker S, Yang C, Hwang SJ, Liu BC, Chen JH, Jha V (2020) The novel coronavirus 2019 epidemic and kidneys. Kidney Int 97(5):824–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netland J, DeDiego ML, Zhao J, Fett C, Alvarez E, Nieto-Torres JL, Enjuanes L, Perlman S (2010) Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology 399:120e8

    Article  CAS  Google Scholar 

  • Polivka J, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142(2):164–175

    Article  CAS  PubMed  Google Scholar 

  • Pranav D, Marie C (2004) Cholesterol removal by methyl – Cyclodextrin inhibits poliovirus entry. J Virol 78(1):33–41

    Article  CAS  Google Scholar 

  • Pratelli A, Colao V (2015) Role of the lipid rafts in the life cycle of canine coronavirus. J Gen Virol 96(2):331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin D, Feng N, Fan W, Ma X, Yan Q, Lv Z, Zeng Y, Zhu J, Lu C (2011) Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi’s sarcoma-associated herpes virus by herpes simplex virus type1. BMC Microbiol 11:240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappe JC, Wilde A, Di H, Müller C, Stalder H, V’kovski P, Er S, Brinton M, Ziebuhr J, Ruggli N, Thiel V (2018) Antiviral activity of K22 against members of the order Nidovirales. Virus Res 246:28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16(69)

    Google Scholar 

  • Shahmohamadnejad S, Nabavi SF, Habtemariam S, Sarkar K, Sil P, Dowran R, Nabavi SM (2000) Inhibitors of double membrane vesicles and oxysterol-binding protein for COVID-19. Cell Biol Int. https://doi.org/10.1002/cbin.11400

  • Sharpe HR, Gilbride C, Allen E, Belij-Rammerstorfer S, Bissett C, Ewer K, Lambe T (2020) The early landscape of COVID-19 vaccine development in the UK and rest of the world. Immunology. https://doi.org/10.1111/imm.13222

  • Shin YK, Liu Q, Tikoo SK et al (2007) Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza a virus propagation. J Gen Virol 88:942–995

    Article  CAS  PubMed  Google Scholar 

  • Shin JS, Jung E, Kim M, Baric RS, Go YY (2018a) Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro. Viruses 10(6):283

    Article  PubMed Central  CAS  Google Scholar 

  • Shin JS, Jung E, Kim M, Baric RS, Go YY (2018b) Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro. Viruses 10(6):283

    Article  PubMed Central  CAS  Google Scholar 

  • Shirato K, Kawase M, Matsuyama S (2013) Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87(23):12552–12561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T (2010) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 85(2):873–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci 102(33):11876–11881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  CAS  PubMed  Google Scholar 

  • Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, Tsao SW, Nicholls JM, Altmeyer R, JMS P, Bruzzone R, Nal B (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 82(22):11318–11330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner JA, Zheng BJ, Zhou J, Watt RM, Jiang JQ, Wong KL, Lin YP, Lu LY, He ML, Kung HF et al (2005) The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 12:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teralı K, Baddal B, Gülcan HO (2020 Nov) Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 100:107697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsunetsugu-Yokota Y (2008) Large-scale preparation of UV-inactivated SARS coronavirus virions for vaccine antigen. Methods Mol Biol 454:119e26

    Google Scholar 

  • Turner A et al (2011) Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am J Transplant 11(3):613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ujike M, Taguchi F (2015) Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7(4):1700–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uno Y (2020) Camostat mesilate therapy for COVID-19. Intern Emerg Med:1–2

  • Vincent MJ, Bergeron E, Benjannet S, Bobbie R, Erickson B, Rollin PE, Ksiazek TG TG, Seidah NG, Stuart T, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walls AC, Park YJ, Tortorici A, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Barrett JW, Stanford M, Werden SJ, Johnston JB, Gao X, Sun M, Cheng JQ, McFadden G (2006) Infection of human cancer cells with myxoma virus requires Aktactivation via interaction with a viral ankyrin repeat host range factor. Proc Natl Acad Sci 103:4640–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-H, Chung F-T, Lin S-M, Shu-Yi H, Chun-Liang C, Lee K-Y, Lin T-Y, Han-Pin K (2014) Adjuvant treatment with a mammalian target of rapamycin inhibitor, sirolimus, and steroids improves outcomes in patients with severe H1N1 pneumonia and acute respiratory failure. Crit Care Med 42(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201

    Article  CAS  PubMed  Google Scholar 

  • Ye L et al (2017) mTOR promotes antiviral humoral immunity by differentially regulating CD4 helper T cell and B cell responses. J Virol 91(4):e01653–e01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaher NH, Mostafa MI, Altaher AY (2020) Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharm 70(2):145–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Cao J, Zhao L, Qin Z, Ke J, Pan W, Ren H et al (2005) Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology 331:128e35

    Article  CAS  Google Scholar 

  • Zheng Y, Liu S (2020) Prevent COVID-19 severity by repurposing mTOR inhibitors. Preprints 2020040060

    Google Scholar 

  • Zhou Y et al (2020) Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 6:14. https://doi.org/10.1038/s41421-020-0153-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Dr. Kasturi Sarkar acknowledges St. Xavier’s College, Kolkata, India for the support to write the chapter. Prof. Parames Sil acknowledges Bose Institute, Kolkata, India for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Ethics declarations

This is a review paper, and no experiment has been performed. The work is not funded by any agency.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, K., Sil, P.C. (2021). Potential Drug Strategies to Target Coronaviruses. In: Asea, A.A.A., Kaur, P. (eds) Coronavirus Therapeutics – Volume I. Advances in Experimental Medicine and Biology, vol 1352. Springer, Cham. https://doi.org/10.1007/978-3-030-85109-5_7

Download citation

Publish with us

Policies and ethics