Skip to main content

Burst Detection

  • 360 Accesses

Abstract

This chapter provides a theoretical framework for burst detection, including its advantages, disadvantages, and other essential features. It further enumerates various open-source tools that can be used to conduct burst detection and discusses the use cases on how the information professionals can apply it in their daily lives. The chapter is followed by a case study using two different tools to demonstrate the application of burst detection in libraries.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85085-2_6
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-85085-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lind S (2016) Science of science (Sci2) tool manual. https://wiki.cns.iu.edu/pages/viewpage.action?pageId=1245860#id-4.6TemporalAnalysis(When)-4.6.1BurstDetection. Accessed 22 Feb 2021

  2. Zhang X, Shasha D (2006) Better burst detection. In: Proceedings of the 22nd international conference on data engineering. IEEE Computer Society, Washington, DC, pp 146–149

    Google Scholar 

  3. Zhu Y, Shasha D (2003) Efficient elastic burst detection in data streams. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 336–345

    CrossRef  Google Scholar 

  4. Ryan D (ed) (2004) High performance discovery in time series: techniques and case studies. Springer, New York

    Google Scholar 

  5. Singh T, Kumari M (2021) Burst: real-time events burst detection in social text stream. J Supercomput. https://doi.org/10.1007/s11227-021-03717-4

  6. Ebina R, Nakamura K, Oyanagi S (2011) A real-time burst detection method. In: 2011 IEEE 23rd international conference on tools with artificial intelligence, pp 1040–1046. https://doi.org/10.1109/ICTAI.2011.177

  7. Kleinberg J (2002) Bursty and hierarchical structure in streams. In: 8th ACM SIGKDD international conference on knowledge discovery and data mining. https://www.cs.cornell.edu/home/kleinber/bhs.pdf. Accessed 09 June 2021

  8. Tattershall E, Nenadic G, Stevens RD (2020) Detecting bursty terms in computer science research. Scientometrics 122:681–699. https://doi.org/10.1007/s11192-019-03307-5

    CrossRef  Google Scholar 

  9. Aggarwal CC, Subbian K (2012) Event detection in social streams. In: Proceeding 2012 SIAM international conference data mining, pp 624–635

    Google Scholar 

  10. Carbonell JG, Yang Y, Laferty J, Brown R, Pierce T, Liu X (1999) CMU Approach to TDT-2: segmentation, detection, and tracking. In: Proceedings of the 1999 DARPA broadcast news conference. https://doi.org/10.1184/R1/6604133.v1. Accessed 11 June 2021

  11. Lee P, Lakshmanan LV, Milios EE (2014) Incremental cluster evolution tracking from highly dynamic network data. In: 30th International conference on IEEE data engineering (ICDE), pp 3–14

    Google Scholar 

  12. Orr W, Tadepalli P, Fern X (2018) Event detection with neural networks: a rigorous empirical evaluation. In: Proceedings of the 2018 conference on empirical methods in natural language processing. Association for Computational Linguistics, Brussels, pp 999–1004

    Google Scholar 

  13. McMinn AJ, Jose JM (2015) Real-time entity-based event detection for twitter. In: International conference of the cross-language evaluation forum for European languages, pp 65–77

    Google Scholar 

  14. Guille A, Favre C (2015) Event detection, tracking, and visualization in twitter: a mention-anomaly-based approach. Soc Netw Anal Min 5(1):18

    CrossRef  Google Scholar 

  15. He Q, Chang K, Lim E-P (2007) Using burstiness to improve clustering of topics in news streams. In: ICDM ’07: Proceedings of the 2007 seventh IEEE international conference on data mining. IEEE Computer Society, Washington, DC, pp 493–498

    Google Scholar 

  16. He Q, Chang K, Lim E-P, Zhang J (2007) Bursty feature representation for clustering text streams. In: Proceedings of the seventh SIAM international conference on data mining, Minneapolis, Minnesota, pp 491–496

    Google Scholar 

  17. Lappas T, Arai B, Platakis M, Kotsakos D, Gunopulos D (2009) On burstiness-ware search for document sequences. In: Proceedings of the 15th AC, SIGKDD international conference on knowledge discovery and data mining, New York, pp 477–486

    Google Scholar 

  18. Sakkopoulus E, Antoniou D, Adamopoulou P, Tsirakis N, Tsakalidis A (2010) A web personalizing technique using adaptive data structures: the case of bursts in web visits. J Syst Softw 83:2200–2210

    CrossRef  Google Scholar 

  19. Kumar R, Novak J, Raghavan P, Tomkins A (2005) On the bursty evolution of blogspace. World Wide Web 8:159–178. https://doi.org/10.1007/s11280-004-4872-4

    CrossRef  Google Scholar 

  20. Platakis M, Kotsakos D, Gunopulos D (2008) Discovering hot topics in the blogosphere. In: Proceedings of the 2nd Panhellenic scientific student conference on informatics, related technologies and applications, Samos, pp 122–1332

    Google Scholar 

  21. Weng J, Lee B-S (2011) Event detection in twitter. In: Fifth international AAAI conference on weblogs and social media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2767/3299 Accessed 21 Feb 2021

  22. Diao Q, Jiang J, Zhu F, Lim EP (2012) Finding bursty topics from microblogs. In: Proceedings of the 50th annual meeting of the association for computational linguistics: long papers-volume 1, ACL ’12, pp 536–544

    Google Scholar 

  23. Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, SIGMOD ’10, pp 1155–1158

    Google Scholar 

  24. Xie S, Wang G, Lin S, Yu PS (2012) Review spam detection via temporal pattern discovery. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12. ACM Press, Beijing, p 823

    Google Scholar 

  25. Fung GPC, Yu JX, Yu PS, Lu, H (2005) Parameter free bursty events detection in text streams. In: Proceedings of the 31st international conference on very large data bases, VLDB ’05, pp 181–192

    Google Scholar 

  26. Takahashi Y, Utsuro T, Yoshioka M, Kando N, Fukuhara T, Nakagawa H, Kiyota Y (2012) Applying a burst model to detect bursty topics in a topic model. In: Isahara H, Kanzaki K (eds) Advances in natural language processing, Berlin, pp 239–249

    Google Scholar 

  27. Pollack J, Adler D (2015) Emergent trends and passing fads in project management research: a scientometric analysis of changes in the field. Int J Proj Manag 33:236–248. https://doi.org/10.1016/j.ijproman.2014.04.011

    CrossRef  Google Scholar 

  28. He D, Parker DS (2010) Topic dynamics: an alternative model of bursts in streams of topics. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 443–452

    Google Scholar 

  29. Mane KK, Börner K (2004) Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci USA 101:5287–5290. https://doi.org/10.1073/pnas.0307626100

    CrossRef  Google Scholar 

  30. Binder J (2015) Bursts. https://cran.r-project.org/web/packages/bursts/bursts.pdf. Accessed 13 June 2021

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lamba, M., Madhusudhan, M. (2022). Burst Detection. In: Text Mining for Information Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-85085-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85085-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85084-5

  • Online ISBN: 978-3-030-85085-2

  • eBook Packages: Computer ScienceComputer Science (R0)