Skip to main content

Network Text Analysis

  • 375 Accesses

Abstract

This chapter covers the theoretical framework for network text analysis, including its advantages, disadvantages, and various essential features. Further, it covers various open-source tools that can be used to make a text network. Information professionals may use network text analysis to answer various research questions and get a better visual representation of textual data. Use cases that show the application of network text analysis in libraries are also covered. Lastly, to demonstrate the application of network text analysis in libraries better, two case studies are performed using the bibliometrix and textnets packages in R language.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85085-2_5
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-85085-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diesner, J, Carley, KM (2005) Revealing social structure from texts: Meta-matrix text analysis as a novel method for network text analysis. In: Narayanan VK, Armstrong DJ (eds) Causal mapping for research in information technology, Harrisburg, pp 81–108

    Google Scholar 

  2. Hunter S (2014) A novel method of network text analysis. Open J Modern Linguist 04:350–366. https://doi.org/10.4236/ojml.2014.42028

    CrossRef  Google Scholar 

  3. Czachesz I (2016) Network analysis of biblical texts. J Cogn Historiography 3:43–67. https://doi.org/10.1558/jch.31682

    CrossRef  Google Scholar 

  4. Lemaire B, Denhiere G (2004) Incremental construction of an associative network from a corpus. In: Proceedings of the annual meeting of the cognitive science society. https://escholarship.org/uc/item/3k98b25s. Accessed 26 Nov 2020

  5. Serrano JI, Iglesias A, Castillo MD del (2007) Modeling human reading in conceptual networks for text representation and comparison. In: 2007 international joint conference on neural networks, Orlando, USA, pp 613–618. https://doi.org/10.1109/IJCNN.2007.4371027

  6. Palshikar GK (2007) Keyword extraction from a single document using centrality measures. In: Ghosh A, De RK, Pal SK (eds) Pattern recognition and machine intelligence. PReMI 2007. Lecture notes in computer science, vol 4815. Springer, Berlin, Heidelberg

    Google Scholar 

  7. Bail CA (2016) Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media. Proc Natl Acad Sci 113:11823–11828. https://doi.org/10.1073/pnas.1607151113

    CrossRef  Google Scholar 

  8. Opsahl T (2013) Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks 35:159–167. https://doi.org/10.1016/j.socnet.2011.07.001

    CrossRef  Google Scholar 

  9. Bail C (2020) Text networks. https://sicss.io/2020/materials/day3-text-analysis/text-networks/rmarkdown/Text_Networks.html. Accessed 19 May 2021

  10. Disney A (2010) Social network analysis 101: centrality measures explained. https://cambridge-intelligence.com/keylines-faqs-social-network-analysis/. Accessed 13 May 2021

  11. Ianni M, Masciari E, Sperlí G (2020) A survey of Big Data dimensions vs Social Networks analysis. J Intell Inf Syst. https://doi.org/10.1007/s10844-020-00629-2

  12. Paranyushkin D (2011) Identifying the pathways for meaning circulation using text network analysis. Venture Fict Pract 2(4). https://noduslabs.com/wp-content/uploads/2012/04/Pathways-Meaning-Text-Network-Analysis.pdf. Accessed 19 May 2021

  13. Paranyushkin D (2010) Text network analysis. https://issuu.com/deemeetree/docs/text-network-analysis. Accessed 27 Nov 2020.

  14. Hunter S (2014) A novel method of network text analysis. Open J Modern Linguist 4(2):350–366. https://doi.org/10.4236/ojml.2014.42028

    CrossRef  Google Scholar 

  15. Pepper S (2002) The TAO of topic maps: Finding the way in the age of Infoglut. Ontopia. https://ontopia.net/topicmaps/materials/tao.html. Accessed 27 Nov 2020

  16. Wlodarczyk B (2012) Topic Map Library = Better Library: an Introduction to the “National Library of Poland” Project. In: World library and information congress: 78th IFLA general conference and assembly, Helsinki. https://www.ifla.org/past-wlic/2012/117-wlodarczyk-en.pdf

  17. Garshol LM (2004) Metadata? Thesauri? Taxonomies? Topic Maps! Making sense of it all. J Inf Sci 30(4):378–391. https://doi.org/10.1177/0165551504045856

    CrossRef  Google Scholar 

  18. Tanev H (2014) Learning textologies: Networks of Linked word clusters. In: Biemann C, Mehler A (eds) Text mining. Theory and applications of natural language processing. Springer, Cham. https://doi-org.lib-ezproxy.concordia.ca/10.1007/978-3-319-12655-5_2

  19. Helms R, Ignacio R, Brinkkemper S, Zonneveld A (2010) Limitations of network analysis for studying efficiency and effectiveness of knowledge sharing. Electron J Knowl Manag 8(1):53–68

    Google Scholar 

  20. Rule A, Cointet J-P, Bearman PS (2015) Lexical shifts, substantive changes, and continuity in State of the Union discourse, 1790–2014. PNAS 112:10837–10844. https://doi.org/10.1073/pnas.1512221112

    CrossRef  Google Scholar 

  21. Sedighi M (2016) Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics). Library Review 65:52–64. https://doi.org/10.1108/LR-07-2015-0075

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lamba, M., Madhusudhan, M. (2022). Network Text Analysis. In: Text Mining for Information Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-85085-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85085-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85084-5

  • Online ISBN: 978-3-030-85085-2

  • eBook Packages: Computer ScienceComputer Science (R0)