Martone M (ed) (2014) Data Citation Synthesis Group: joint declaration of data citation principles, San Diego, CA: FORCE11. https://doi.org/10.25490/a97f-egyk
McNeice K, Caspers M, Gavriilidou M (2017) FutureTDM: reducing barriers and increasing uptake of text and data mining for research environments using a collaborative knowledge and open information approach. https://project.futuretdm.eu/wp-content/uploads/2017/07/FutureTDM_D5.3-FutureTDM-practitioner-guidelines.pdf. Accessed 5 Nov 2020
Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3:160018. https://doi.org/10.1038/sdata.2016.18
Creative Commons (2020) About the licenses. https://creativecommons.org/licenses/. Accessed 6 Nov 2020
Finck M, Moscon V (2019) Copyright law on blockchains: between new forms of rights administration and digital rights management 2.0. IIC 50:77–108. https://doi.org/10.1007/s40319-018-00776-8
CrossRef
Google Scholar
Townsend L (2017) Social media research & ethics. SAGE research methods [streaming video]. SAGE, London. https://doi.org/10.4135/9781526413642. Accessed 26 Feb 2021
Berends F (2020) Library guides: text mining & text analysis: considerations - ethics, copyright, licencing, etiquette. https://guides.library.uq.edu.au/research-techniques/text-mining-analysis/considerations. Accessed 6 Nov 2020
Ducato R, Strowel A (2019) Limitations to text and data mining and consumer empowerment: making the case for a right to “Machine Legibility.” IIC 50:649–684. https://doi.org/10.1007/s40319-019-00833-w
CrossRef
Google Scholar
Caplan R, Donovan J, Hanson L, Matthews J (2018) Algorithmic accountability: a primer, data & society. https://datasociety.net/wp-content/uploads/2019/09/DandS_Algorithmic_Accountability.pdf. Accessed 8 Nov 2020
Ntoutsi E, Fafalios P, Gadiraju U, Iosifidis V, Nejdl W, Vidal M-E, Ruggieri S, Turini F, Papadopoulos S, Krasanakis E, Kompatsiaris I, Kinder-Kurlanda K, Wagner C, Karimi F, Fernandez M, Alani H, Berendt B, Kruegel T, Heinze C, Broelemann K, Kasneci G, Tiropanis T, Staab S (2020) Bias in data-driven artificial intelligence systems—an introductory survey. WIREs Data Min Knowl Discovery 10:e1356. https://doi.org/10.1002/widm.1356
Google Scholar
Lepri B, Oliver N, Letouzé E, Pentland A, Vinck P (2018) Fair, transparent, and accountable algorithmic decision-making processes. Philos Technol 31:611–627. https://doi.org/10.1007/s13347-017-0279-x
CrossRef
Google Scholar
Booker C (2019) Booker, Wyden, Clarke introduce bill requiring companies to target bias in corporate algorithms. https://www.booker.senate.gov/news/press/booker-wyden-clarke-introduce-bill-requiring-companies-to-target-bias-in-corporate-algorithms. Accessed 12 Nov 2020
Butler D (2013) When Google got flu wrong. Nat News 494:155. https://doi.org/10.1038/494155a
CrossRef
Google Scholar
Cirillo D, Catuara-Solarz S, Morey C, Guney E, Subirats L, Mellino S, Gigante A, Valencia A, Rementeria MJ, Chadha AS, Mavridis N (2020) Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. npj Digit Med 3:1–11. https://doi.org/10.1038/s41746-020-0288-5
Diaz M, Johnson I, Lazar A et al (2018) Addressing age-related bias in sentiment analysis. In: Proceedings of the 2018 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, pp 1–14
Google Scholar