Skip to main content

Using Network Analysis to Characterize Participation and Interaction in a Citizen Science Online Community

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12856)

Abstract

Citizen Science (CS) projects provide a space for collaboration among scientists and the general public as a basis for making joint scientific discoveries. Analysis of existing datasets from CS projects can broaden our understanding of how different stakeholder groups interact and contribute to the joint achievements. To this end, we have collected publicly available forum data from the “Chimp&See” project hosted on the Zooniverse platform via crawling its Talk pages. The collected data were then analysed using Social Network Analysis (SNA) and Epistemic Network Analysis (ENA) techniques. The results obtained shed light on the participation and collaboration patterns of different stakeholder groups within discussion forums of the “Chimp&See” project.

Keywords

  • Citizen science
  • Discussion forums
  • Social Network Analysis
  • Epistemic Network Analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85071-5_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-85071-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    CS Track project: https://cstrack.eu. Retrieved: 2021-04-26.

  2. 2.

    Zooniverse: https://www.zooniverse.org. Retrieved: 2021-04-26.

  3. 3.

    Chimp& See Talk Pages: https://talk.chimpandsee.org. Retrieved: 2021-04-10.

  4. 4.

    Epistemic Network Analysis, Wisconsin Center for Education Research: https://www.epistemicnetwork.org. Retrieved: 2021-04-26.

References

  1. Aristeidou, M., Scanlon, E., Sharples, M.: Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017)

    CrossRef  Google Scholar 

  2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009)

    Google Scholar 

  3. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    CrossRef  Google Scholar 

  4. Bonney, R., et al.: Public participation in scientific research: defining the field and assessing its potential for informal science education. A CAISE Inquiry Group report. ERIC (2009). Online Submission

    Google Scholar 

  5. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    CrossRef  Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    CrossRef  Google Scholar 

  7. Chang, H.H., Chuang, S.S.: Social capital and individual motivations on knowledge sharing: participant involvement as a moderator. Inf. Manag. 48(1), 9–18 (2011)

    CrossRef  Google Scholar 

  8. Csanadi, A., Eagan, B., Kollar, I., Shaffer, D.W., Fischer, F.: When coding-and-counting is not enough: using epistemic network analysis (ENA) to analyze verbal data in CSCL research. Int. J. Comput.-Support. Collab. Learn. 13(4), 419–438 (2018). https://doi.org/10.1007/s11412-018-9292-z

    CrossRef  Google Scholar 

  9. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction, New Brunswick (1967)

    Google Scholar 

  10. Haklay, M.M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S., Vohland, K.: What is citizen science? The challenges of definition. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 13–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_2

    CrossRef  Google Scholar 

  11. Haklay, M.: Citizen science and policy: a European perspective. Woodrow Wilson International Center for Scholars, Washington, DC (2015)

    Google Scholar 

  12. Hollenbeck, J.R., Jamieson, B.B.: Human capital, social capital, and social network analysis: implications for strategic human resource management. Acad. Manag. Perspect. 29(3), 370–385 (2015)

    CrossRef  Google Scholar 

  13. Hoppe, H.U., Harrer, A., Göhnert, T., Hecking, T.: Applying network models and network analysis techniques to the study of online communities. In: Cress, U., Moskaliuk, J., Jeong, H. (eds.) Mass Collaboration and Education. CCLS, vol. 16, pp. 347–366. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-13536-6_17

    CrossRef  Google Scholar 

  14. Huang, J., et al.: Scientific discourse of citizen scientists: models as a boundary object for collaborative problem solving. Comput. Hum. Behav. 87, 480–492 (2018)

    CrossRef  Google Scholar 

  15. Kullenberg, C., Kasperowski, D.: What is citizen science? A scientometric meta-analysis. PLoS ONE 11(1), e0147152 (2016)

    CrossRef  Google Scholar 

  16. Lave, J., Wenger, E.: Legitimate peripheral participation. Learners, learning and assessment. The Open University, London (2016)

    Google Scholar 

  17. Lemmens, R., et al.: A conceptual model for participants and activities in citizen science projects. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 159–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_9

    CrossRef  Google Scholar 

  18. Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., Crowston, K.: The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10(6), 298–304 (2012)

    CrossRef  Google Scholar 

  19. Rohden, F., Kullenberg, C., Hagen, N., Kasperowski, D.: Tagging, pinging and linking-user roles in virtual citizen science forums. Citiz. Sci. Theory Pract. 4(1), 19 (2019)

    CrossRef  Google Scholar 

  20. Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3), 9–45 (2016)

    CrossRef  Google Scholar 

  21. Buckingham Shum, S., Echeverria, V., Martinez-Maldonado, R.: The multimodal matrix as a quantitative ethnography methodology. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) ICQE 2019. CCIS, vol. 1112, pp. 26–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_3

    CrossRef  Google Scholar 

  22. Siebert-Evenstone, A.L., Irgens, G.A., Collier, W., Swiecki, Z., Ruis, A.R., Shaffer, D.W.: In search of conversational grain size: modelling semantic structure using moving stanza windows. J. Learn. Anal. 4(3), 123–139 (2017)

    Google Scholar 

  23. Simpson, R., Page, K.R., De Roure, D.: Zooniverse: observing the world’s largest citizen science platform (2014)

    Google Scholar 

  24. Tinati, R., Van Kleek, M., Simperl, E., Luczak-Rösch, M., Simpson, R., Shadbolt, N.: Designing for citizen data analysis: a cross-sectional case study of a multi-domain citizen science platform. ACM (2015)

    Google Scholar 

  25. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the European Union in the context of the CS Track (Grant Agreement no. 872522) under the Horizon 2020 program. This document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of its content. We thank all CS Track team members for the fruitful interactions that facilitated this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishari Amarasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Amarasinghe, I., Manske, S., Hoppe, H.U., Santos, P., Hernández-Leo, D. (2021). Using Network Analysis to Characterize Participation and Interaction in a Citizen Science Online Community. In: Hernández-Leo, D., Hishiyama, R., Zurita, G., Weyers, B., Nolte, A., Ogata, H. (eds) Collaboration Technologies and Social Computing. CollabTech 2021. Lecture Notes in Computer Science(), vol 12856. Springer, Cham. https://doi.org/10.1007/978-3-030-85071-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85071-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85070-8

  • Online ISBN: 978-3-030-85071-5

  • eBook Packages: Computer ScienceComputer Science (R0)