Abstract
Citizen Science (CS) projects provide a space for collaboration among scientists and the general public as a basis for making joint scientific discoveries. Analysis of existing datasets from CS projects can broaden our understanding of how different stakeholder groups interact and contribute to the joint achievements. To this end, we have collected publicly available forum data from the “Chimp&See” project hosted on the Zooniverse platform via crawling its Talk pages. The collected data were then analysed using Social Network Analysis (SNA) and Epistemic Network Analysis (ENA) techniques. The results obtained shed light on the participation and collaboration patterns of different stakeholder groups within discussion forums of the “Chimp&See” project.
Keywords
- Citizen science
- Discussion forums
- Social Network Analysis
- Epistemic Network Analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
CS Track project: https://cstrack.eu. Retrieved: 2021-04-26.
- 2.
Zooniverse: https://www.zooniverse.org. Retrieved: 2021-04-26.
- 3.
Chimp& See Talk Pages: https://talk.chimpandsee.org. Retrieved: 2021-04-10.
- 4.
Epistemic Network Analysis, Wisconsin Center for Education Research: https://www.epistemicnetwork.org. Retrieved: 2021-04-26.
References
Aristeidou, M., Scanlon, E., Sharples, M.: Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009)
Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)
Bonney, R., et al.: Public participation in scientific research: defining the field and assessing its potential for informal science education. A CAISE Inquiry Group report. ERIC (2009). Online Submission
Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)
Chang, H.H., Chuang, S.S.: Social capital and individual motivations on knowledge sharing: participant involvement as a moderator. Inf. Manag. 48(1), 9–18 (2011)
Csanadi, A., Eagan, B., Kollar, I., Shaffer, D.W., Fischer, F.: When coding-and-counting is not enough: using epistemic network analysis (ENA) to analyze verbal data in CSCL research. Int. J. Comput.-Support. Collab. Learn. 13(4), 419–438 (2018). https://doi.org/10.1007/s11412-018-9292-z
Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction, New Brunswick (1967)
Haklay, M.M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S., Vohland, K.: What is citizen science? The challenges of definition. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 13–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_2
Haklay, M.: Citizen science and policy: a European perspective. Woodrow Wilson International Center for Scholars, Washington, DC (2015)
Hollenbeck, J.R., Jamieson, B.B.: Human capital, social capital, and social network analysis: implications for strategic human resource management. Acad. Manag. Perspect. 29(3), 370–385 (2015)
Hoppe, H.U., Harrer, A., Göhnert, T., Hecking, T.: Applying network models and network analysis techniques to the study of online communities. In: Cress, U., Moskaliuk, J., Jeong, H. (eds.) Mass Collaboration and Education. CCLS, vol. 16, pp. 347–366. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-13536-6_17
Huang, J., et al.: Scientific discourse of citizen scientists: models as a boundary object for collaborative problem solving. Comput. Hum. Behav. 87, 480–492 (2018)
Kullenberg, C., Kasperowski, D.: What is citizen science? A scientometric meta-analysis. PLoS ONE 11(1), e0147152 (2016)
Lave, J., Wenger, E.: Legitimate peripheral participation. Learners, learning and assessment. The Open University, London (2016)
Lemmens, R., et al.: A conceptual model for participants and activities in citizen science projects. In: Vohland, K., et al. (eds.) The Science of Citizen Science, pp. 159–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4_9
Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., Crowston, K.: The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10(6), 298–304 (2012)
Rohden, F., Kullenberg, C., Hagen, N., Kasperowski, D.: Tagging, pinging and linking-user roles in virtual citizen science forums. Citiz. Sci. Theory Pract. 4(1), 19 (2019)
Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3), 9–45 (2016)
Buckingham Shum, S., Echeverria, V., Martinez-Maldonado, R.: The multimodal matrix as a quantitative ethnography methodology. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) ICQE 2019. CCIS, vol. 1112, pp. 26–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_3
Siebert-Evenstone, A.L., Irgens, G.A., Collier, W., Swiecki, Z., Ruis, A.R., Shaffer, D.W.: In search of conversational grain size: modelling semantic structure using moving stanza windows. J. Learn. Anal. 4(3), 123–139 (2017)
Simpson, R., Page, K.R., De Roure, D.: Zooniverse: observing the world’s largest citizen science platform (2014)
Tinati, R., Van Kleek, M., Simperl, E., Luczak-Rösch, M., Simpson, R., Shadbolt, N.: Designing for citizen data analysis: a cross-sectional case study of a multi-domain citizen science platform. ACM (2015)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1999)
Acknowledgements
This work was partially funded by the European Union in the context of the CS Track (Grant Agreement no. 872522) under the Horizon 2020 program. This document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of its content. We thank all CS Track team members for the fruitful interactions that facilitated this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Amarasinghe, I., Manske, S., Hoppe, H.U., Santos, P., Hernández-Leo, D. (2021). Using Network Analysis to Characterize Participation and Interaction in a Citizen Science Online Community. In: Hernández-Leo, D., Hishiyama, R., Zurita, G., Weyers, B., Nolte, A., Ogata, H. (eds) Collaboration Technologies and Social Computing. CollabTech 2021. Lecture Notes in Computer Science(), vol 12856. Springer, Cham. https://doi.org/10.1007/978-3-030-85071-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-85071-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85070-8
Online ISBN: 978-3-030-85071-5
eBook Packages: Computer ScienceComputer Science (R0)