Skip to main content

Closing the Gap Between Discrete Abstractions and Continuous Control: Completeness via Robustness and Controllability

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12860))

Abstract

A central theoretical question surrounding abstraction-based control of continuous nonlinear systems is whether one can decide through algorithmic procedures the existence of a controller to render the system to satisfy a given specification (e.g., safety, reachability, or more generally a temporal logic formula). Known algorithms are mostly sound but not complete in the sense that they return a correct controller upon termination, but do not offer guarantees of finding a controller if one exists. Completeness of abstraction-based nonlinear control in the general setting, therefore, remains an open question. This paper investigates this theoretical question and presents two sets of main results. First, we prove that sampled-data control of nonlinear systems with temporal logic specifications is robustly decidable in the sense that, given a continuous-time nonlinear control system and a temporal logic formula, one can algorithmically decide whether there exists a robust sampled-data control strategy to realize this specification when the right-hand side of the system is slightly perturbed by a small disturbance. Second, we show that under the assumption of local nonlinear controllability of the nominal system around an arbitrary trajectory that realizes a given specification, we can always construct a (robust) sampled-data control strategy via a sufficiently fine discrete abstraction. In a sense, this shows that temporal logic control for controllable nonlinear systems is decidable.

Supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program, and the Ontario Early Researcher Award Program. The paper has an extended version with Appendix available at [19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47(3), 410–421 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-valued Maps and Viability Theory. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69512-4

    Book  MATH  Google Scholar 

  3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Belta, C., Yordanov, B., Aydin Gol, E.: Formal Methods for Discrete-Time Dynamical Systems. SSDC, vol. 89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50763-7

    Book  MATH  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  6. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)

    Article  MathSciNet  Google Scholar 

  7. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  Google Scholar 

  8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    Book  MATH  Google Scholar 

  9. Hermes, H.: On local and global controllability. SIAM J. Control 12(2), 252–261 (1974)

    Article  MathSciNet  Google Scholar 

  10. Kloetzer, M., Belta, C.: Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Trans. Robot. 23(2), 320–330 (2007)

    Article  Google Scholar 

  11. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132(1–2), 113–128 (1994)

    Article  MathSciNet  Google Scholar 

  12. Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive, high-level robot control. IEEE Robot. Autom. Mag. 18(3), 65–74 (2011)

    Article  Google Scholar 

  13. Li, Y., Liu, J.: Invariance control synthesis for switched nonlinear systems: an interval analysis approach. IEEE Trans. Autom. Control 63(7), 2206–2211 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Liu, J.: Robustly complete reach-and-stay control synthesis for switched systems via interval analysis. In: Proceedings of ACC (2018)

    Google Scholar 

  15. Li, Y., Liu, J.: Rocs: A robustly complete control synthesis tool for nonlinear dynamical systems. In: Proceedings of HSCC, pp. 130–135 (2018)

    Google Scholar 

  16. Li, Y., Liu, J.: Robustly complete synthesis of memoryless controllers for nonlinear systems with reach-and-stay specifications. IEEE Trans. Autom. Control 66(3), 1199–1206 (2021)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Sun, Z., Liu, J.: A specification-guided framework for temporal logic control of nonlinear systems. arXiv preprint arXiv:2104.01385 (2021).

  18. Liu, J.: Robust abstractions for control synthesis: completeness via robustness for linear-time properties. In: Proceedings of HSCC, pp. 101–110. ACM (2017)

    Google Scholar 

  19. Liu, J.: Closing the gap between discrete abstractions and continuous control: Completeness via robustness and controllability. In: Proceedings of FORMATS (2021). https://www.math.uwaterloo.ca/~j49liu/papers/2021/liu2021closing.pdf

  20. Liu, J., Ozay, N., Topcu, U., Murray, R.: Synthesis of reactive switching protocols from temporal logic specifications. IEEE Trans. Autom. Control 58(7), 1771–1785 (2013)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Ozay, N.: Abstraction, discretization, and robustness in temporal logic control of dynamical systems. In: Proceedings of HSCC, pp. 293–302 (2014)

    Google Scholar 

  22. Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-based control synthesis. Nonlinear Anal. Hybrid Syst. 22, 1–15 (2016)

    Article  MathSciNet  Google Scholar 

  23. Nam, K., Arapostathis, A.: A sufficient condition for local controllability of nonlinear systems along closed orbits. IEEE Trans. Autom. Control 37(3), 378–380 (1992)

    Article  MathSciNet  Google Scholar 

  24. Nilsson, P., Ozay, N., Liu, J.: Augmented finite transition systems as abstractions for control synthesis. Discrete Event Dyn. Syst. 27(2), 301–340 (2017)

    Article  MathSciNet  Google Scholar 

  25. Ozay, N., Liu, J., Prabhakar, P., Murray, R.M.: Computing augmented finite transition systems to synthesize switching protocols for polynomial switched systems. In: Proceedings of ACC, pp. 6237–6244 (2013)

    Google Scholar 

  26. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS, pp. 46–57. IEEE (1977)

    Google Scholar 

  27. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

    Article  MathSciNet  Google Scholar 

  28. Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations for the synthesis of symbolic controllers. IEEE Trans. Autom. Control 62(4), 1781–1796 (2017)

    Article  MathSciNet  Google Scholar 

  29. Royden, H., Fitzpatrick, P.: Real Analysis. Printice-Hall, Boston (2010)

    MATH  Google Scholar 

  30. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0224-5

    Book  MATH  Google Scholar 

  31. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems. IEEE Trans. Autom. Control 51(12), 1862–1877 (2006)

    Article  MathSciNet  Google Scholar 

  32. Zamani, M., Pola, G., Mazo, M., Tabuada, P.: Symbolic models for nonlinear control systems without stability assumptions. IEEE Trans. Autom. Control 57(7), 1804–1809 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. (2021). Closing the Gap Between Discrete Abstractions and Continuous Control: Completeness via Robustness and Controllability. In: Dima, C., Shirmohammadi, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2021. Lecture Notes in Computer Science(), vol 12860. Springer, Cham. https://doi.org/10.1007/978-3-030-85037-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85037-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85036-4

  • Online ISBN: 978-3-030-85037-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics