Skip to main content

Monitoring Plans and Weaning Protocols for Critically Ill Patients

  • Chapter
  • First Online:
  • 647 Accesses

Abstract

Respiratory monitoring is essential during both noninvasive ventilation (NIV) and invasive mechanical ventilation (IMV) of critically ill patients. While patients are treated, ventilator requirements get changed. Therefore, ventilator settings must be reviewed through close monitoring of clinical parameters and ventilator parameters of the patients to meet their new criteria and prevent ventilator-induced lung injury (VILI). While on NIV, more parameters must be monitored to early predict NIV failure for the decision of intubation or assess weanability as soon as possible. Moreover, some technical issues must be applied to optimize ventilation settings before considering NIV failure. Once patient clinical parameters/lung functions get normalized, a weaning plan could be started safely. The purpose of this chapter is to review the respiratory monitoring plans, methods for optimizing ventilator settings, and possible weaning plans for critically ill patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spahija J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38(2):518–26.

    Article  PubMed  Google Scholar 

  2. Yoshida T, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578–85.

    Article  PubMed  Google Scholar 

  3. Goligher EC, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192(9):1080–8.

    Article  PubMed  Google Scholar 

  4. Goligher EC, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7(1):90–8.

    Article  PubMed  Google Scholar 

  5. Dres M, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(1):57–66.

    Article  PubMed  Google Scholar 

  6. Bertoni M, SS, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. In: Vincent JL, editor. Annual update in intensive care and emergency medicine. Springer; 2020.

    Google Scholar 

  7. Davidson AC, et al. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax. 2016;71(Suppl 2):ii1–ii35.

    Article  PubMed  Google Scholar 

  8. Adams A. Pulmonary function in the mechanically ventilated patient. Respir Care Clin N Am. 1997;3(2):309–31.

    CAS  PubMed  Google Scholar 

  9. Hadda V, Kumari R. Protocols for weaning from NIV: appraisal of evidence. Insights Chest Dis. 2016;1:14.

    Article  Google Scholar 

  10. Steen C. Prevention of deterioration in acutely ill patients in hospital. Nurs Stand. 2010;24(49):49–57.

    Article  PubMed  Google Scholar 

  11. Jevon P, Ewens B, Pooni JS. Monitoring the critically ill patient. Wiley Online Library; 2012.

    Google Scholar 

  12. Lermitte J, Garfield MJ. Weaning from mechanical ventilation. Contin Educ Anaesth Crit Care Pain. 2005;5(4):113–7.

    Article  Google Scholar 

  13. Fish E, et al. The esophageal pressure-guided ventilation 2 (EPVent2) trial protocol: a multicentre, randomised clinical trial of mechanical ventilation guided by transpulmonary pressure. BMJ Open. 2014;4(10):e006356.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med. 2017;5(14):285.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kassis EB, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–13.

    Article  Google Scholar 

  16. Yoshida T, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med. 2018;197(8):1018–26.

    Article  PubMed  Google Scholar 

  17. Yoshida T, Amato MB, Kavanagh BP. Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med. 2018;44(12):2235–8.

    Article  PubMed  Google Scholar 

  18. Protti A, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.

    Article  PubMed  Google Scholar 

  19. Amato MB, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    Article  CAS  PubMed  Google Scholar 

  20. Carteaux G, et al. Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort. Crit Care Med. 2013;41(9):2125–32.

    Article  PubMed  Google Scholar 

  21. Goligher EC, et al. Mechanical ventilation–induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197(2):204–13.

    Article  CAS  PubMed  Google Scholar 

  22. Mauri T, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.

    Article  PubMed  Google Scholar 

  23. Bellani G, et al. Plateau and driving pressure in the presence of spontaneous breathing. Intensive Care Med. 2019;45(1):97–8.

    Article  PubMed  Google Scholar 

  24. Goldman M, et al. Mechanics of the human diaphragm during voluntary contraction: dynamics. J Appl Physiol. 1978;44(6):840–8.

    Article  CAS  PubMed  Google Scholar 

  25. Grassino A, et al. Mechanics of the human diaphragm during voluntary contraction: statics. J Appl Physiol. 1978;44(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  26. Spadaro S, et al. A methodological approach for determination of maximal inspiratory pressure in patients undergoing invasive mechanical ventilation. Minerva Anestesiol. 2015;81(1):33–8.

    CAS  PubMed  Google Scholar 

  27. Bertoni M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23(1):1–10.

    Article  Google Scholar 

  28. Telias I, Damiani F, Brochard L. The airway occlusion pressure (P 0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med. 2018;44(9):1532–5.

    Article  PubMed  Google Scholar 

  29. Whitelaw WA, Derenne J-P, Milic-Emili J. Occlusion pressure as a measure of respiratory center output cm conscious man. Respir Physiol. 1975;23(2):181–99.

    Article  CAS  PubMed  Google Scholar 

  30. Holle R, Schoene RB, Pavlin E. Effect of respiratory muscle weakness on P0. 1 induced by partial curarization. J Appl Physiol. 1984;57(4):1150–7.

    Article  CAS  PubMed  Google Scholar 

  31. Rittayamai N, et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care. 2017;7(1):1–10.

    Article  Google Scholar 

  32. Vargas F, et al. Respiratory failure in chronic obstructive pulmonary disease after extubation: value of expiratory flow limitation and airway occlusion pressure after 0.1 second (P0. 1). J Crit Care. 2008;23(4):577–84.

    Article  PubMed  Google Scholar 

  33. Kera T, Aihara A, Inomata T. Reliability of airway occlusion pressure as an index of respiratory motor output. Respir Care. 2013;58(5):845–9.

    PubMed  Google Scholar 

  34. Alberti A, et al. P0. 1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21(7):547–53.

    Article  CAS  PubMed  Google Scholar 

  35. Mauri T, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159–67.

    Article  CAS  PubMed  Google Scholar 

  36. Pletsch-Assuncao R, et al. Accuracy of invasive and noninvasive parameters for diagnosing ventilatory overassistance during pressure support ventilation. Crit Care Med. 2018;46(3):411–7.

    Article  PubMed  Google Scholar 

  37. Iotti GA, et al. Closed-loop control of airway occlusion pressure at 0.1 second (P sub 0.1) applied to pressure-support ventilation: algorithm and application in intubated patients. Crit Care Med. 1996;24(5):771–9.

    Article  CAS  PubMed  Google Scholar 

  38. Conti G, et al. Estimation of occlusion pressure during assisted ventilation in patients with intrinsic PEEP. Am J Respir Crit Care Med. 1996;154(4):907–12.

    Article  CAS  PubMed  Google Scholar 

  39. Sinderby C, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kim M, et al. Effects of lung volume and electrode position on the esophageal diaphragmatic EMG. J Appl Physiol. 1978;45(3):392–8.

    Article  CAS  PubMed  Google Scholar 

  41. Beloncle F, et al. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Crit Care. 2017;21(1):1–8.

    Article  Google Scholar 

  42. Sinderby C, Liu S, Colombo D, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care. 2013;17:R239.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Di Mussi R, Spadaro S, Mirabella L, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20:1.

    Article  PubMed  Google Scholar 

  44. Barwing J, Pedroni C, Olgemöller U, Quintel M, Moerer O. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013;17(4):1–11.

    Article  Google Scholar 

  45. Piquilloud L, Beloncle F., Richard JC, Mancebo J, Mercat A, Brochard L, Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study [Internet]. Ann Intensive Care. 2019;9:89.

    Google Scholar 

  46. Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.

    Article  PubMed  Google Scholar 

  47. Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–9.

    Article  PubMed  Google Scholar 

  48. Regan EN, Dallachiesa L. How to care for a patient with a tracheostomy. Nursing. 2009;39(8):34–9.

    Article  PubMed  Google Scholar 

  49. Barnett M. A practical guide to the management of a tracheostomy. J Commun Nurs. 2008;22(12):24–6.

    Google Scholar 

  50. Truwit JD, Bernard GR. Noninvasive ventilation—don’t push too hard. N Engl J Med. 2004;350:2512–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. In: Vincent J-L, editor. Annual update in intensive care and emergency medicine. Cham: Springer International Publishing; 2020. p. 21–35.

    Google Scholar 

  52. Roberts C, et al. Non-invasive ventilation in chronic obstructive pulmonary disease: management of acute type 2 respiratory failure. Clin Med. 2008;8(5):517.

    Article  CAS  Google Scholar 

  53. Carron M, et al. Predictors of failure of noninvasive ventilation in patients with severe community-acquired pneumonia. J Crit Care. 2010;25(3):540.e9–540.e14.

    Article  Google Scholar 

  54. Harb HS, et al. Update efficacy of aerosol therapy with noninvasive ventilator approach (non-invasive ventilation and nasal high flow). J Drug Deliv Sci Technol. 2020;59:101922.

    Article  CAS  Google Scholar 

  55. Faverio P, et al. Noninvasive ventilation weaning in acute hypercapnic respiratory failure due to COPD exacerbation: a real-life observational study. Can Respir J. 2019;2019:3478968.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahim, M.E.A., Saeed, H., Harb, H.S., Madney, Y.M. (2021). Monitoring Plans and Weaning Protocols for Critically Ill Patients. In: Essentials of Aerosol Therapy in Critically ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-85026-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85026-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85025-8

  • Online ISBN: 978-3-030-85026-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics