Skip to main content

Hitting Hard Times: Effect of Abiotic Stress on Root Physiology

  • Chapter
  • First Online:
Rhizobiology: Molecular Physiology of Plant Roots

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 799 Accesses

Abstract

Plants are exposed to a plethora of  challenging situations throughout their lifecycle. As plants are sessile in nature, they have developed sophisticated signaling pathways to cope with the changing environment. However, most of the research till now is focused on aerial parts of the plant. Root although is the hidden part of a plant but performs many indispensable functions for the plant’s survival. Furthermore, many abiotic stresses are first perceived by roots of a plant. Therefore, understanding how roots behave during stressful environment can be very useful for raising stress-tolerant crops along with increasing crop productivity. This chapter focuses on how roots sense different external stimuli and respond towards it. We have discussed molecular, physiological, anatomical changes in roots in response to various abiotic environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  CAS  PubMed  Google Scholar 

  • Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341

    Article  CAS  PubMed  Google Scholar 

  • Bankaji I, Sleimi N, López-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2014) Effects of combined abiotic stresses on growth, trace element accumulation, and phytohormone regulation in two halophytic species. J Plant Growth Regul 33:632–643

    Article  CAS  Google Scholar 

  • Bañon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Article  Google Scholar 

  • Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bheemanahalli R, Hechanova S, Kshirod JK et al (2019) Root anatomical traits of wild-rices reveal links between flooded rice and dryland sorghum. Plant Physiol Rep 24:155–167

    Article  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bloch D, Puli MR, Mosquna A, Yalovsky S (2019) Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Development 146(17):89

    Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants, pp 1158–1249

    Google Scholar 

  • Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B (2017) The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Chen D, Kam J, Richardson T, Drenth J, Guo X, McIntyre CL, Chai S, Rae AL, Xue GP (2016) Abiotic stress upregulated TaZFP34 represses the expression of type-B response regulator and SHY2 genes and enhances root to shoot ratio in wheat. Plant Sci 252:88–102

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Zhou DX, Zhao Y (2016) WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development. Plant Signal Behav 11(2):e1130198

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Sha JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Google Scholar 

  • Comas L, Becker S, Cruz V, Byrne P, Dierig D (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and function. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!, pp1–15

    Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    Article  CAS  PubMed  Google Scholar 

  • de Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  CAS  Google Scholar 

  • de Ollas C, Arbona V, Gómez-Cadenas A (2015) Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. Plant Cell Environ 38:2157–2170

    Article  PubMed  CAS  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Song Y, Zhao Z, Qiu NW, Liu X, Guo W (2017) The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem Biophys Res Commun 490:225–230

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, Crevecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Google Scholar 

  • Fang Q, Jiang T, Xu L, Liu H, Mao H, Wang X, Jiao B, Duan Y, Wang Q, Dong Q et al (2017) A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiol Biochem 114:100–110

    Article  CAS  PubMed  Google Scholar 

  • Fediuc E, Lips SH, Erdei L (2005) O-Acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J Plant Physiol 162:865–872

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkovsky T, Mileyko Y, Bucksch A, Moore B, Symonova O, Prince CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S et al (2012) GiA roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:1–12

    CAS  Google Scholar 

  • Gamuyao R, Chin J, Pariasca-Tanaka J et al (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Kamble NU, Verma P et al (2020a) Arabidopsis Protein L-Isoaspartyl Methyltransferase repairs isoaspartyl damage to antioxidant enzymes and increases heat and oxidative stress tolerance. J Biol Chem 295:783–799

    Article  PubMed  Google Scholar 

  • Ghosh S, Kamble NU, Majee M (2020b) A protein repairing enzyme, PROTEIN L-ISOASPARTYL METHYLTRANSFERASE is involved in salinity stress tolerance by increasing efficiency of ROS-scavenging enzymes. Environ Exp Bot 180:104266

    Google Scholar 

  • Grift TE, Novais J, Bohn M (2011) High-throughput phenotyping technology for maize roots. Biosyst Eng 110:40–48

    Article  Google Scholar 

  • Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean beta-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111(2):851–856

    Article  PubMed  CAS  Google Scholar 

  • Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. New Phytol 169:489–499

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Mol Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  • Heymans A, Couvreur V, LaRue T, Paez-Garcia A, Lobet G (2020) GRANAR, a computational tool to better understand the functional importance of monocotyledon root anatomy. Plant Physiol 182:707–720

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Hussain S, Raza MA, Safdar ME, Hayyat MS, Shafiq I, Yang WY, Liu J (2020) Exploring half root-stress approach: current knowledge and future prospects. Plant Prod Sci 23:1–11

    Article  CAS  Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F et al (2019) Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341–346

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Julkowska MM, Hoefsloot HC, Mol S, Feron R, de Boer GJ, Haring MA, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol 166:1387–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJB, Korte A, Haring MA, de Boer GJ et al (2017) Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29:3198–3213

    Google Scholar 

  • Jung JK, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamble NU, Majee M (2020) PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 477(22):4453–4471

    Article  CAS  PubMed  Google Scholar 

  • Katano K, Honda K, Suzuki N (2018) Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int J Mol Sci 19:3370

    Article  PubMed Central  CAS  Google Scholar 

  • Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24:25–37

    Article  CAS  PubMed  Google Scholar 

  • Lamers J, Van der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182:1624–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou SM, Wang W (2015) Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot 110:73–84

    Article  CAS  Google Scholar 

  • Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W (2018a) Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci 9:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Chen R, Chu Y, Huang J, Jin L, Wang G, Huang J (2018b) Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice. Plant Physiol Biochem 130:566–576

    Article  CAS  PubMed  Google Scholar 

  • Little DY, Rao HY, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102:13693–13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biol Plant 55:187–190

    Article  CAS  Google Scholar 

  • Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D et al (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci USA 113:224–229

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Ye JM, Yang YQ, Lin HX, Yue LL, Luo J et al (2019) The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell 48(5):697–709

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Google Scholar 

  • Manzano C, Pallero-Baena M, Casimiro I, De Rybel B, Orman- Ligeza B, Van Isterdael G, Beeckman T, Draye X, Casero P, del Pozo JC (2014) The emerging role of ROS signalling during lateral root development. Plant Physiol 165:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Morris EC, Griffiths M, Golebiowska A, Mairhofer S, Burr-Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock CJ, Lynch JP, Vissenberg K, Ritz K, Wells DM, Mooney SJ, Bennett MJ (2017) Shaping 3D root system architecture. Curr Biol 27:R919–R930

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Sharp R (1993) Involvement of abscisic acid in controlling plant growth in soil of low water potential. Func Plant Biol 20(5):425–437

    Article  CAS  Google Scholar 

  • Muñoz-Espinoza VA, López-Climent MF, Casaretto JA, Gómez-Cadenas A (2015) Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci 6:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaraj KM, Jane WN, Verslues PE (2013) Role of the putative osmosensor arabidopsis Histidine Kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953

    Article  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–47

    Google Scholar 

  • Pedersen O, Sauter M, Colmer TD, Nakazono M (2021) Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol 229:42–49

    Article  CAS  PubMed  Google Scholar 

  • Perkons U, Kautz T, Uteau D, Peth S, Geier V, Thomas K, Holz KL, Athmann M, Pude R, Köpke U (2014) Root-length densities of various annual crops following crops with contrasting root systems. Soil Tillage Res 137:50–57

    Article  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierret A, Gonkhamdee S, Jourdan C, Maeght JL (2013) IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant Soil 373:531–539

    Article  CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao S, Fang Y, Wu A, Xu B, Zhang S, Deng X, Djalovic I, Siddique KHM, Chen Y (2019) Dissecting root trait variability in maize genotypes using the semi-hydroponic phenotyping platform. Plant Soil 439:75–90

    Article  CAS  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikin A, Richmond AE (1976) Amelioration of chilling injuries in cucumber seedlings by abscisic acid. Plant Physiol 38:95–97

    Article  CAS  Google Scholar 

  • Robaglia C, Thomas M, Meyer C (2012) Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Delhaize E, Watt M, Richardson AE (2016) Plant roots: understanding structure and function in an ocean of complexity. Ann Bot 118(4):555–559

    Article  PubMed Central  Google Scholar 

  • Salvi P, Kamble NU, Majee M (2018) Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol 59:155–166

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schnepf A, Jin M, Ockert C, Bol R, Leitner D (2015) Automated root tracking with “root system analyzer.” EGUGA 17:13297

    Google Scholar 

  • Spollen WG, Sharp RE (1991) Spatial distribution of turgor and root growth at low water potentials. Plant Physiol 96(2):438–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stohs SJ, Bagachi D, Hassoun E, Bgachi M (2000) Oxidative mechanism in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  PubMed  Google Scholar 

  • Sussmilch FC, Brodribb TJ, McAdam SAM (2017) Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J Exp Bot 68:2913–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarbreck SM, Colac OR, Davies JM (2013) Plant calcium-permeable channels. Plant Physiol 163:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangthong N, Jogloy S, Pensuk V, Kesmala T, Vorasoot N (2016) Distribution patterns of peanut roots under different durations of early season drought stress. Field Crops Res 198:40–49

    Article  Google Scholar 

  • Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S (2013) RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25:1709–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Tyburski J, Dunajska K, Tretyn A (2009) Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. Plant Growth Regul 59:27–36

    Article  CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genet 45(9):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C. A SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:7306–17311

    Article  CAS  Google Scholar 

  • Verma RK, Santosh Kumar VV, Yadav SK, Pushkar S, Rao MV, Chinnusamy V (2019) Overexpression of ABA receptor PYL10 gene confers drought and cold tolerance to indica rice. Front Plant Sci 10:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017) Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36:1971–1984

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F (2017) Drought tolerance conferred in soybean (Glycine max. L.) by GmMYB84, a novel R2R3-MYB transcription factor. Plant Cell Physiol 58:1764–1776

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Xu X, Tang Z, Zhang W, Huang XY, Zhao FJ (2018) OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci 9:1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potential: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z (2014) ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 10:e1004791

    Google Scholar 

  • Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X (2020) CBL10-CIPK8-SOS1, a novel SOS pathway, functions in Arabidopsis to regulate salt tolerance. J Exp Bot 71:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ni Z, Chen Q, Qu Y (2017) The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 491:642–648

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B et al (2014a) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  CAS  PubMed  Google Scholar 

  • Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT (2014b) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ 37:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde B (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Tian B, Zhang F, Tao F, Li W (2011) Plant adaptation to frequent alterations between high and low temperatures: remodeling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ 34:1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zou Y, Liu X, Wang Q, Chen Y, Liu C, Qiu Y, Zhang W (2014) OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta 1840:1676–1685

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Ghosh, S. (2021). Hitting Hard Times: Effect of Abiotic Stress on Root Physiology. In: Mukherjee, S., Baluška, F. (eds) Rhizobiology: Molecular Physiology of Plant Roots. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-84985-6_20

Download citation

Publish with us

Policies and ethics