Skip to main content

Disturbances in Redox Homeostasis in the Ageing Brain

  • Chapter
  • First Online:
Redox Signaling and Biomarkers in Ageing

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 15))

  • 788 Accesses

Abstract

The brain normally adapts to various extents of reactive oxygen species (ROS) and reactive nitrogen species (RNS) within its complex network of neurons and glial cells and, thereby, maintains the neuronal circuits. Although the neuron is the highest consumer of O2 and glucose, it has compromised responses to oxidative stress and nitrative stress, resulting in overwhelming levels of oxidants in the ageing brain. More specifically, the neurons face challenges posed by high levels of free radicals, alterations in mitochondrial metabolism, and calcium signalling, accompanied by overloading of iron at various sites in the brain. The brain has the least antioxidant defences against oxidants, compared to the heart, and previous studies from our group have revealed that the ageing brain is challenged with an accumulation of several oxidised products, resulting in neuronal degeneration and deficits in cognitive functions. Here, we review the findings on redox homeostasis in an ageing brain, which when disturbed by ROS and RNS, paves the way to neurodegenerative diseases that also influence the longevity of the patient. The possibilities of certain non-invasive interventions in offering protection against OS-mediated redox dyshomeostasis in the aged brain are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhijit S, Tripathi SJ, Bhagya V, Shankaranarayana Rao BS, Subramanyam MV, Asha Devi S (2018) Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronal number in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Exp Gerontol 101:101–112

    CAS  PubMed  Google Scholar 

  • Ahmad S, Khan H, Shahab U, Rehman S, Rafi Z, Khan MY, Ansari A, Siddiqui Z, Ashraf JM, Abdullah SMS, Habib S, Uddin M (2017) Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine. Front Biosci 9:71–87

    Google Scholar 

  • Anand S, Asha Devi S, Ravikiran T (2014) Differential expression of the cerebral cortex proteome in physically trained adult rats. Brain Res Bull 104:88–91

    CAS  PubMed  Google Scholar 

  • Anzai K, Ogawa K, Goto Y, Senzaki Y, Ozawa T, Yamamoto H (1999) Oxidation-dependent changes in the stability and permeability of lipid bilayers. Antioxid Redox Signal 1:339–347

    CAS  PubMed  Google Scholar 

  • Asha Devi S, Manjula KR (2014) Intermittent cold-induced hippocampal oxidative stress is associated with changes in the plasma lipid composition and is modifiable by vitamins C and E in old rats. Neurochem Int 13:46–52

    Google Scholar 

  • Asha Devi S, Manjula KR, Subramanyam MVV (2012) Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat’s frontoparietal cortex. Neurosci Letts 529:155–160

    CAS  Google Scholar 

  • Asha Devi S, Prathima S (2005) Synergistic effects of physical exercise and antioxidants in aging mammalian brain. In: Thakur MK, Prasad S (eds) Molecular and cellular neurobiology. Narosa Publishing House, New Delhi, India, pp 123–133

    Google Scholar 

  • Asha Devi S, Ravi Kiran T (2004) Regional responses in antioxidant system to exercise training and dietary vitamin E in aging. Neurobiol Aging 25:501–508

    PubMed  Google Scholar 

  • Asha Devi S, Sagar Chandrasekar BK, Manjula KR, Ishii N (2011) Grape seed proanthocyanidin lowers brain oxidative stress in adult and middle-aged rats. Exp Gerontol 46:958–964

    CAS  PubMed  Google Scholar 

  • Ashraf A, Christos Michaelides C, Walker TA, Antigoni Ekonomou A, Maria Suessmilch M, Sriskanthanathan A, Abraha S, Parkes A, Parkes HG, Geraki K, So P (2019) Regional distributions of iron, copper and zinc and their relationships with glia in a normal aging mouse model. Front Aging Neurosci 11:351

    Google Scholar 

  • Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7:a021758

    Google Scholar 

  • Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across murine blood-brain barrier. Neurosci Lett 179:53–56

    CAS  PubMed  Google Scholar 

  • Belarbi K, Cuvelier E, Destée A, Bernard Gressier B, Chartier-Harlin M (2017) NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegeneration 12:84

    Google Scholar 

  • Berg D, Youdim MB, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213

    PubMed  Google Scholar 

  • Bergado JA, Almaguer W, Rojas Y, Capdevila V, Frey JU (2011) Spatial and emotional memory in aged rats: a behavioral-statistical analysis. Neurosci 172:256–269

    CAS  Google Scholar 

  • Block ML (2008) NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 9 (Suppl 2):S8

    Google Scholar 

  • Bolaños JP, Moro MA, Lizasoain I, Almeida A (2009) Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv Drug Deliv Rev 61:1299–1315

    PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. The FASEB J 13:1145–1155

    PubMed  Google Scholar 

  • Burke SN, Wallace J, Nematollahi S, Uprety AR, Barnes CA (2010) Pattern separation deficits may contribute to age-associated recognition impairments. Behav Neurosci 124:559–573

    PubMed  PubMed Central  Google Scholar 

  • Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241

    CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chen CT, Green JT, Orr SK, Bazinet RP (2008) Regulation of brain polyunsaturated fatty acid uptake and turnover of prostaglandins. Leukot Essent Fatty Acids 79:85–91

    CAS  Google Scholar 

  • Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalalnce in Parkinson’s disease. Biochem Biophys Acta 1780:162–1367

    Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 16:167–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I (2019) Dietary polyphenols: a multifactorial strategy to target Alzheimer’s disease. Int Mol Sci 20:5090

    CAS  Google Scholar 

  • Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F (2006) Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 24:1265–1276

    PubMed  Google Scholar 

  • Dolu N, Khan A, Dokutan S (2015) Effect of Vitamin E administration on learning of the young male rats. J Exp Neurosci 9:81–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez M, de Oliveira E, Odena MA, Portero M, Pamplona R, Ferrer I (2016) Redox proteomic profiling of neuroketal-adducted proteins in human brain: regional vulnerability at middle age increases in the elderly. Free Radic Biol Med 95:1–15

    PubMed  Google Scholar 

  • Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discovery 10:453–471

    CAS  PubMed  Google Scholar 

  • Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL, Behrens MM (2009) IL‐6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One 4:e5518

    Google Scholar 

  • Egea J, Fabregat I, Frapar YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou L, Daiber A (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito G, Vos M, Vilain S, Swerts J, De Sousa Valadas J, Van Meensel S, Schaap O, Verstreken P (2013) Aconitase causes iron toxicity in Drosophila pink1 mutants. PLoS Genet. 9:e1003478

    Google Scholar 

  • Fernandez-Fernandez S, Bobo-Jimenez V, Requejo-Aguilar R, Gonzalez-Fernandez S, Resch M, Carabias-Carrasco M, Joaquim Ros J, Almeida A, Bolaños JP (2018) Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol 19:52–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finke T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Google Scholar 

  • Flohé L (2016) The impact of thiol peroxidases on redox regulation. Free Radic Res 50:126–142

    PubMed  Google Scholar 

  • Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    CAS  PubMed  Google Scholar 

  • Foley TD, Katchur KM, Gillespie PF (2016) Disulfide stress targets modulators of excitotoxicity in otherwise healthy brains. Neurochem Res 41:2763–2770

    CAS  PubMed  Google Scholar 

  • Foster TC, Defazio RA, Bizon JL (2012) Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. In: Jeon KW (ed) International review of cell and molecular biology. Academic Press, San Diego, CA, pp 87–144

    Google Scholar 

  • Gao H, Zhang F, Zhou H, Kam W, Wilson B, Hong J (2011) Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119:807–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimino D, Marmot MG, Singh-Manoux A (2008) Inflammatory markers and cognitive function in middle-aged adults: the Whitehall II study. Psychoendocrinology 33:1322–1334

    Google Scholar 

  • González-Fraguela ME, Sanchez TS, Robinson Agramonte MA, Rosales LLC (2018) Cellular redox imbalance and neurochemical effect in cognitive-deficient old rats. Behav Sci 8:93

    Google Scholar 

  • Grant SGN, Blackstock WP (2001) Proteomics in neuroscience: from protein to network. J Neurosci Res 21:8315–8318

    CAS  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130

    CAS  PubMed  Google Scholar 

  • Harrison FE, Bowman GL, Polidori MC (2014) Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients 6:1752–1781

    Google Scholar 

  • Holdstock JS, Mayes AR, Cezayirli E, Isaac CL, Aggleton JP, Roberts N (2000) A comparison of egocentric and allocentric spatial memory in a patient with selective hippocampal damage. Neuropsychologia 38:410–425

    CAS  PubMed  Google Scholar 

  • Holzschneider K, Wolbers T, Roder B, Hotting K (2012) Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage 59:3003–3014

    PubMed  Google Scholar 

  • Howcroft TK, Campus J, Louis GB, Smith MT, Wise B, Wyss-Coray T, Augustine AD, McElhaney JE, Kohanski R, Sierra F (2013) The role of inflammation in age-related disease. Aging 5:84–93

    Google Scholar 

  • Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 4884613

    Google Scholar 

  • Ihara Y, Nobukuni K, Takata H, Hayabara T (2013) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27:105–108

    Google Scholar 

  • Jolitha AB, Subramanyam MVV, Asha Devi S (2006) Modification by vitamin E and exercise of oxidative stress in hippocampus and cortical regions of aging rat brain: studies on superoxide dismutase and protein oxidation status. Exp Gerontol 41:753–763

    CAS  PubMed  Google Scholar 

  • Jovanovic S, Jovanovic V (2011) Resistance of the nerve cells to oxidative injury. Med Pregyl 64:386–391

    Google Scholar 

  • Kamsler A, Segal M (2003) Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kan S, Asha Devi S, Kawashima S (1991) Effect of vitamin E on the accumulation of fluorescent material in cultured cerebral cortical cells of mice. Exp Gerontol 26:365–371

    CAS  PubMed  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909

    CAS  PubMed  Google Scholar 

  • Kim DB, Shin GH, Kim JM, Kim YH, Lee JH, Lee JS, Song HJ, Choe SY, Park IJ, Cho JH (2016) Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem 194:920–927

    CAS  PubMed  Google Scholar 

  • Kishida KT, Pao M, Holland SM, Klann E (2005) NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem 94:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res 70:1–7

    CAS  PubMed  Google Scholar 

  • Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC (2012) Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 33:828.e1-828.e17

    Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    CAS  PubMed  Google Scholar 

  • Latunde-Dada GO (2017) Ferroptosis role of lipid peroxidation, ironand ferritinophagy. Biochem Biophys Acta 1861:1893–1900

    CAS  Google Scholar 

  • Lavenex PB, Lavenex P (2009) Spatial memory and the monkey hippocampus: not all space Is created equal. Hippocampus 19:8–19

    PubMed  Google Scholar 

  • Lee M, Cho T, Jantaratnotai N, Wang YT, Edith McGeer E (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24:2533–2545

    CAS  PubMed  Google Scholar 

  • Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps, Apoptosis. Int J Program Cell Death 14:478–500

    Google Scholar 

  • Li M, Hu G, Chen Y (2016) Evaluation of the antioxidant capacity of natural polyphenolic compounds using a macrocyclic Ni-(II) complex-catalysed Briggs-Rauscher reaction. Food Chem 197:987–991

    CAS  PubMed  Google Scholar 

  • Lin J, Kuo W, Baskaran R, Kuo C, Chen Y, Chen WS, Ho T, Day CH, Mahalakshmi B, Huang C (2020) Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (albany NY) 12:6852–6864

    CAS  Google Scholar 

  • Lopez-Fabuel I, Le Douce J, Logan A, James AM, G. Bonvento G, Murphy MP, Angeles Almeida A, Bolaños JP (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci USA 113:13063–13068

    Google Scholar 

  • Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz O, Höger H, Lubec G (2019) Dentate gyrus peroxiredoxin 6 levels discriminate aged unimpaired from impaired rats in a spatial memory task. Front Aging Neurosci 11:198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lushchak VL (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    CAS  PubMed  Google Scholar 

  • Macchi B, Marino-Merlo F, Frezza C, Cuzzocrea S, Mastino A (2014) Inflammation and programmed cell death in Alzheimer;s disease: comparison of the central nervous system and peripherl blood. Mol Neurobiol 50:463–472

    CAS  PubMed  Google Scholar 

  • Madreiter-Sokowski CT, Thomas C, Ristow M (2020) Interrelation between ROS and Ca+2 in aging and age-related diseases. Redox Biol 36:101678

    Google Scholar 

  • Maher P (2018) Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: implications for age-related neurodegenerative diseases. Free Radic Biol Med 115:92–104

    CAS  PubMed  Google Scholar 

  • Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:21

    Google Scholar 

  • Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H, Havlik R, White LR (2000) Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54:1265–1272

    CAS  PubMed  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2018) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278:21592–21600

    CAS  PubMed  Google Scholar 

  • Maxwell N, Castro, RW, Sutherland NM, Vaughan KL, Szarowicz MD, de Cabo R, Mattison JA, Valdez G (2018) α‐Motor neurons are spared from aging while their synaptic inputs degenerate in monkeys and mice. Aging Cell 17:e12726

    Google Scholar 

  • Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu H, Mahata J, Kilty M, Bednarz K, Bell D, Gordon PH, Hornig M, Mehrazin M, Naini A, Beal MF, Factor-Litvak P (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9:177–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Franceschi C, Monti D (2014) Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. Syst Rev Ageing Res Rev 14:81–101

    CAS  Google Scholar 

  • Montuschi P, Barnes P, Roberts LJ (2007) 2nd Insights into oxidative stress: the isoprostanes. Curr Med Chem 14:703–717

    CAS  PubMed  Google Scholar 

  • Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560

    PubMed  Google Scholar 

  • Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509

    CAS  PubMed  Google Scholar 

  • Musiek ES, Yin H, Milne GL, Morrow JD (2005) Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40:987–994

    CAS  PubMed  Google Scholar 

  • Nakamura H (2003) Experimental and clinical aspects of oxidative stress and redox regulation. Rinsho Byori 51:109–114

    CAS  PubMed  Google Scholar 

  • Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–778

    Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670-686

    CAS  PubMed  Google Scholar 

  • Navarro A, Pino MJSD, Mez CG, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:R985–R992

    CAS  PubMed  Google Scholar 

  • Palomar-Bonet M, Atienza M, Cantero JL, JL, (2020) Blood total antioxidant status is associated with cortical glucose uptake and factors related to accelerated aging. Brain Struct Funct 225:841–851

    CAS  PubMed  Google Scholar 

  • Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M (2005) Allocentric spatial memory in humans with hippocampal lesions. Acta Psychol (amst) 118:123–147

    Google Scholar 

  • Perluigi M, Di Domenico IF, Giorgi IA, Schinina IME, Coccia R, Cini C, Bellia F, Cambria MT, Cornelius C, Butterfield DA, Calabrese V (2010) Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J Neurosci Res 88:3498–3507

    Google Scholar 

  • Polis B, Samson AO (2021) Neurogenesis versus neurodegeneration: the broken balance in Alzheimer’s disease. Neural Regen Res 16:496–497

    PubMed  Google Scholar 

  • Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn B, Banks WA, Morley JE, Klein JB, Butterfield DA (2004) Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neurosci 126:915–926

    CAS  Google Scholar 

  • Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Angeles Almeida A, Bolaños JP (2012) g-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3:718

    PubMed  Google Scholar 

  • Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh L, Koltai E (2016) Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 98:187–196

    CAS  PubMed  Google Scholar 

  • Raiser M, Wamelink MM, Kowald A, Gensch B, Heeran G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol Chem 6:10

    Google Scholar 

  • Ramis MR, Sarubbo F, Terrasa JL, Moranta D, Aparicio S, Miralles A, Esteban S (2016) Chronic alpha-tocopherol increases central monoamines synthesis and improves cognitive and motor abilities in old rats. Rejuvenation Res 19:159–171

    Google Scholar 

  • Riera CE, Dillin A (2015) Tipping the metabolic scales towards increased longevity in mammals. Nature Cell Biol 17:196–203

    PubMed  Google Scholar 

  • Roberts LJ, Fessel JP, Davies SS (2005) The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol 15:143–148

    CAS  PubMed  Google Scholar 

  • Rodriguez-Rocha H, Garcia-Garcia A, Pickett C, Li S, Jones J, Chen H, Webb B, Choi J, Zhou Y, Zimmerman MC, Franco R (2013) Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases. Free Radic Biol Med 61:370–383

    CAS  PubMed  Google Scholar 

  • Rygiel KA, Grady JP, Turnbull DM (2014) Respiratory chain deficiency in aged spinal motor neurons. Neurobiol Aging 35:2230–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönfeld P, Reiser G (2013) “Why does brain metabolism not favor burning of fatty acids to provide energy?—Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499

    Google Scholar 

  • Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JE, Ince PG, Haynes LJ, Theaker R, Gelsthorpe C, Baxter L, Forster G, Lace GL, Shaw PJ, Matthews FE, Savva GM, Brayne C, Wharton SB (2010) Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 36:25–40

    CAS  PubMed  Google Scholar 

  • Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24:1583

    CAS  PubMed Central  Google Scholar 

  • Singh T, Newman AB (2011) Inflammatory markers in population studies of aging. Ageing Res Rev 10:319–329

    CAS  PubMed  Google Scholar 

  • Siqueira JR, Fochesatto C, de Andrade A, Santos M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23:663–671

    CAS  PubMed  Google Scholar 

  • Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18:557–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101:3381–3386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Pham AN, Waite TD (2018) The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinson’s disease. Dalton Trans 47:4059–4069

    CAS  PubMed  Google Scholar 

  • Tejada-Simon MV, Serrano F, Villasana LE, Wu G, Quinn MT, Klann E (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29:97–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiels E, Urban NN, Gonzalez-Burgos GR, Kanterewicz BI, German Barrionuevo G, Chu CT, Oury TD, Klann E (2000) Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 20:7631–7639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MP, Chartrand AK, Reynolds A, Vitcvisky V, Banerjee R, Gendelman HE (2007) Ion channel blockade attenuates aggregate synuclein induction of microglial reactive oxygen species: relevance for pathogenesis of Parkinson’s disease. J Neurochem 100:503–519

    CAS  PubMed  Google Scholar 

  • Toledano MB, Planson AG, Delaunay-Moison A (2010) Reining in H2O2 for safe signaling. Cell 140:454–456

    CAS  PubMed  Google Scholar 

  • Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    CAS  PubMed  Google Scholar 

  • Uryash A, Flores V, Adams JA, Allen PD, Lopez JR (2020) Memory and learning deficits are associated with Ca2+ dyshomeostasis in normal aging. Front Aging Neurosci 12:224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanni S, Baldeschi AC, Zattoni M, Legname G (2019) Brain aging: a Ianus-faced player between health and neurodegeneration. J Neurosci Res. https://doi.org/10.1002/jnr.24379

    Article  PubMed  Google Scholar 

  • Vargas-Mendoza N, Morales-Gonzalez A, Madrigal-Santillan EO, Madrigal-Bujaidar E, Alvarez-Gonzalez I, Garcia-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T, Morales-Gonzalez JA (2019) Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants (Basel) 8

    Google Scholar 

  • Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10:S58–S62

    PubMed  Google Scholar 

  • Walton NM, Shin R, Tajinda K, Heusner CL, Kogan JH, Miyake S, Chen Q, Tamura K, Matsumoto M (2012) Adult neurogenesis transiently generates oxidative stress. PLoS One 7:e35264

    Google Scholar 

  • Yang S, Liu T, Li S, Zhang X, Ding Q, Que H, Yan X, Wei K, Liu S (2008) Comparative proteomic analysis of brains of naturally aging mice. Neurosci 154:1107–1120

    CAS  Google Scholar 

  • Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850:1607–1621

    CAS  PubMed  Google Scholar 

  • Zing JM (2007) Modulation of signal transduction by vitamin E. Mol Aspects Med 28:481–506

    Google Scholar 

  • Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM (2005) Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 33:1385–1389

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research facilities provided for stereology measurements by Prof.B.S.Shankaranarayana Rao, National Institute of Mental Health and Neurosciences, Bangalore is gratefully acknowledged.

Funding

Funding:

The experimental findings referred in this chapter from the author’s laboratory have been supported from research projects supported by University Grants Commission (No.F.No.33–356/2007), Promotion of University Research and Scientific Excellence (PURSE)—Department of Science and Technology (DST), New Delhi (SR/59/Z-23/ 2010/38) dt.27.06.2011) and Indian Council for Medical Research (No.54/9/CFP/GER/2011/NCD-II, dt.30.04.2012), New Delhi, and Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asha Devi .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest:

Authors declare they have no conflict of interest.

Ethical Approval:

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, S.A., Basavaraju, T.B. (2022). Disturbances in Redox Homeostasis in the Ageing Brain. In: Çakatay, U. (eds) Redox Signaling and Biomarkers in Ageing. Healthy Ageing and Longevity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-84965-8_3

Download citation

Publish with us

Policies and ethics