Skip to main content

Reasons for Femoral Revision

  • 85 Accesses

Abstract

The most frequent reasons for carrying out hip prosthesis revision surgery are aseptic loosening of the prosthesis, followed by dislocations, periprosthetic infections, and periprosthetic fractures. These indications will be discussed in more detail in this chapter.

Keywords

  • Reason
  • Hip revision arthroplasty
  • Aseptic loosening
  • Infection
  • Periprosthetic fracture

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84821-7_2
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84821-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  1. Kenney C, Dick S, Lea J, Liu J, Ebraheim NA. A systematic review of the causes of failure of revision hip arthroplasty. J Orthop. 2019;16:393–5.

    PubMed  PubMed Central  Google Scholar 

  2. Prokopetz JJZ, Losina E, Bliss RL, Wright J, Baron JA, Katz JN. Risk factors for revision of primary total hip arthroplasty: a systematic review. BMC Musculoskelet Disord. 2012;13:251.

    PubMed  PubMed Central  Google Scholar 

  3. Fink B, Urbansky K, Schuster P. Mid term results with the curved modular tapered, fluted titanium Revitan stem in revision hip replacement. Bone Joint J. 2014;96-B(7):889–95.

    CAS  PubMed  Google Scholar 

  4. Sadolghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G. Revision surgery after total joint arthroplasty: a complicated-based analysis using worldwide arthroplasty registers. J Arthroplasty. 2013;28:1329–32.

    Google Scholar 

  5. Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, Kuskowski M, Chen EY, Sharkey PF, Parvizi J, Stiehl JB, Mont MA. Total hip arthroplasties: what are the reasons for revision? Int Orthop. 2008;32:597–604.

    PubMed  Google Scholar 

  6. Lachiewsicz PF, Soileau ES. Changing indications for revision total hip arthroplasty. J Surg Orthop Adv. 2005;14:82–4.

    Google Scholar 

  7. Clohisy JC, Calvert G, Tull F et al., Reasons for revision hip surgery: a retrospective review. Clin Orthop Relat Res. 2004;(429):188–192.

    Google Scholar 

  8. Weeden SH, Paprosky WG. Minimal 11-year follow-up of extensively porous-coated stems in femoral revision total hip arthroplasty. J Arthroplasty. 2002;17(Suppl 1):134–7.

    PubMed  Google Scholar 

  9. Lind M, Krarup N, Mikkelson S, et al. Exchange impaction allografting for femoral revision hip arthroplasty: results in 87 cases after 3.6 years’ follow-up. J Arthroplasty. 2002;17:158–64.

    PubMed  Google Scholar 

  10. Ullmark G, Hallin G, Nilsson O. Impacted corticocancellous allografts and cement for revision of the femur component in total hip arthroplasty. J Arthroplasty. 2002;17:140–9.

    CAS  PubMed  Google Scholar 

  11. Böhm P, Bischel O. Femoral revision with the Wagner SL revision stem: evaluation of one hundred and twenty-nine revisions followed for a mean of 4.8 years. J Bone Joint Surg Am. 2001;83-A:1012–31.

    Google Scholar 

  12. Sandiford NA, Garbuz DS, Masri BA, Duncan CP. Nonmodular tapered fluted titanium stems osseointegrate reliably at short term in revision THAs. Clin Orthop Relat Res. 2017;(475):186–192.

    Google Scholar 

  13. Mavrogenis AF, Dimitriou R, Parvizi J, et al. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9:61–71.

    CAS  PubMed  Google Scholar 

  14. Parithimarkalaignan S, Padmanabdhan TV. Osseointegration: an update. J Indian Prosthodont Soc. 2013;13:2–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oldani C, Domingeuz A Titanium as a biomaterial for implants, recent advances in arthroplasty. In: Kokter S (Ed.), Intech; 2012. isbn:978-953-307-990-5. http://www.intechopen.com/books/recent-advances-in-arthroplasty/titanium-a-abiomaterial-for-implants

  16. Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:1–10.

    Google Scholar 

  17. Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop. 2015;6(2):172–89.

    PubMed  PubMed Central  Google Scholar 

  18. Holt G, Munraghan C, Reilly J, Meek RMD. Biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240–52.

    CAS  PubMed  Google Scholar 

  19. Wilkinson JM, Hamer AJ, Stockley I, Eastell R. Polyethylene wear rate and osteolysis: critical threshold versus continuous dose-response relationship. J Orthop Res. 2005;23:520–5.

    CAS  PubMed  Google Scholar 

  20. Wilkinson JM, Wilson AD, Stockley I, Scott IR, MacDonald DA, Hamer AJ, Gordon WD. Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. J Bone Miner Res. 2003;18:1995–2001.

    CAS  PubMed  Google Scholar 

  21. Oparaugo PC, Clarke IC, Malchau H, Herberts P. Correlation of wear debris-induced osteolysis and revision with volumetric wear-rates of polyethylene: a survey of 8 reports in the literature. Acta Orthop Scand. 2001;72(1):22–8.

    CAS  PubMed  Google Scholar 

  22. Davies AP, Willert HG, Campbell PA, Learmonth ID, Case CP. An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am. 2005;87(1):18–27.

    CAS  PubMed  Google Scholar 

  23. Sinha RK, Shanbhag AS, Maloney WJ, Hasselman CT, Rubash HE. Osteolysis: cause and effect. Instr Course Lect. 1998;47:307–20.

    CAS  PubMed  Google Scholar 

  24. Duisabeau L, Combrade P, Forest B. Environmental effect on fretting of metallic materials for orthopaedic implants. Wear. 2004;256:805–16.

    CAS  Google Scholar 

  25. Jauch SY, Huber G, Sellenschloh K, et al. Micromotions at the taper interface between stem and neck adapter of a bimodular hip prosthesis during activities of daily living. J Orthop Res. 2013;31(8):1165–71.

    CAS  PubMed  Google Scholar 

  26. Schramm M, Wirtz DC, Holzwarth U, Pitto RP. The Morse taper junction in modular revision hip replacement—a biomechanical and retrieval analysis. Biomed Tech (Berl) 2000; 45(4): 105–109.

    Google Scholar 

  27. Pastides PS, Dodd M, Sarraf KM, Willis-Owen CA. Trunnionosis: a pain in the neck. World J Orthop. 2013;4:161–6.

    PubMed  PubMed Central  Google Scholar 

  28. Morawietz L, Classen RA, Schröder JH, et al. Proposal for a histological consensus classification of the periprosthetic interface membrane. J Clin Pathol. 2006;59(6):591–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rujitanaroj PO, Jao B, Yang J, et al. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater. 2013;9(1):4513–24.

    CAS  PubMed  Google Scholar 

  30. Wataha JC. Materials for endosseous dental implants. J Oral Rehabil. 1996;23(2):79–90.

    CAS  PubMed  Google Scholar 

  31. Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum. 2005;52(7):2026–32.

    PubMed  Google Scholar 

  32. Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19(2):213–24.

    PubMed  Google Scholar 

  33. Aspenberg P, van der Vis H. Fluid pressure may cause periprosthetic osteolysis. Particles are not the only thing. Acta Orthop Scand. 1998;69(1):1–4.

    CAS  PubMed  Google Scholar 

  34. Mert M, Oztürkmen Y, Ünkar EA, Erdoğan S, Uzümcügil O. Sciatic nerve compression by an extrapelvic cyst secondary to wear debris after a cementless total hip arthroplasty: a case report and literature review. Int J Surg Case Rep. 2013;4(10):805–8.

    PubMed  PubMed Central  Google Scholar 

  35. Berend ME, Ritter MA, Hyldahl HC, Meding JB, Redelman R. Implant migration and failure in total knee arthroplasty is related to body mass index and tibial component size. J Arthroplasty. 2008;23(6 Suppl 1):104–9.

    PubMed  Google Scholar 

  36. Wong J, Steklov N, Patil S, et al. Predicting the effect of tray malalignment on risk for bone damage and implant subsidence after total knee arthroplasty. J Orthop Res. 2011;29(3):347–53.

    PubMed  Google Scholar 

  37. Pap G, Machner A, Rinnert T, et al. Development and characteristics of a synovial-like interface membrane around cemented tibial hemiarthroplasties in a novel rat model of aseptic prosthesis loosening. Arthritis Rheum. 2001;44(4):956–63.

    CAS  PubMed  Google Scholar 

  38. Gallo J, Raska M, Mrázek F, Petrek M. Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis. Physiol Res. 2008;57(3):339–49.

    CAS  PubMed  Google Scholar 

  39. Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, Harris WH. Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum. 1986;29(7):836–42.

    CAS  PubMed  Google Scholar 

  40. Windisch C, Windisch B, Kolb W, Kolb K, Grützner P, Roth A. Osteodensitometry measurements of periprosthetic bone using dual energy X-ray absorptiometry following total knee arthroplasty. Arch Orthop Trauma Surg. 2012;132(11):1595–601.

    CAS  PubMed  Google Scholar 

  41. Sansone V, Pagani D, Melaot M. The effects on bone cells of metal ions released for orthopaedic implants. A review. Clin Cases Miner Bone Metab. 2013;10:34–40.

    PubMed  PubMed Central  Google Scholar 

  42. Fackler CD, Poss R. Dislocation in total hip arthroplasties. Clin Orthop. 1980;151:169–78.

    Google Scholar 

  43. Li C, Renz N, Trampuz A. Management of periprosthetic joint infection. Hip Pelvis. 2018;30:138–46.

    PubMed  PubMed Central  Google Scholar 

  44. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466:1710–5.

    PubMed  PubMed Central  Google Scholar 

  45. Parvizi J, Ghanem E, Menashe S, Barrack RL, Bauer TW. Periprosthetic infection: what are the diagnostic challenges? J Bone Joint Surg. 2006;88-A:138–47.

    Google Scholar 

  46. Portillo ME, Salvado M, Alier A, Sorli L, Martinez S, Horcajada JP, Puig L. Prosthesis failure within 2 years of implantation is highly predictive of infection. Clin Orthop Relat Res. 2013;471:3672–8.

    PubMed  PubMed Central  Google Scholar 

  47. Gallo J, Kolar M, Novotny R, Rihakova P, Ticha V. Pathogenesis of prosthesis-related infection. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:27–35.

    PubMed  Google Scholar 

  48. Coventry MB. Treatment of infections occurring in total hip surgery. Orthop Clin North Am. 1975;6:991–1003.

    CAS  PubMed  Google Scholar 

  49. Estrada R, Tsukayama D, Gustilo R. Management of THA infections. A prospective study of 108 cases. Orthop Trans. 1993;17:1114–5.

    Google Scholar 

  50. Tsukayma DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996;78-A:512–23.

    Google Scholar 

  51. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA. 1998;279:1537–41.

    CAS  PubMed  Google Scholar 

  52. Martínez-Pastor JC, Muñoz-Mahamud E, Vilchez F, García-Ramiro S, Bori G, Sierra J, Martínez JA, Font L, Mensa J, Soriano A. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009;53:4772–7.

    PubMed  PubMed Central  Google Scholar 

  53. Berdal JE, Skramm I, Mowinckel P, Gulbrandsen P, Bjornholt JV. Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. Clin Microbiol Infect. 2005;11:843–5.

    CAS  PubMed  Google Scholar 

  54. Aboltins CA, Dowsey MM, Buising KL, Peel TN, Daffy JR, Choong PFM, Stanley PA. Gram-negative prosthetic joint infection treated with debridement, prosthesis retention and antibiotic regimes including a fluoroquinolone. Clin Microbiol Infect. 2011;17:862–7.

    CAS  PubMed  Google Scholar 

  55. Soriano A, Garcia S, Bori G, Almela M, Gallart X, Macule F, Sierra J, Martinez JA, Suso S, Mensa J. Treatment of acute post-surgical infection of joint arthroplasty. Clin Microbiol Infect. 2006;12:930–3.

    CAS  PubMed  Google Scholar 

  56. Fink B, Lass R. Diagnostischer Algorithmus für die Fehleranalyse bei schmerzhaften Hüfttotalendoprothesen. Z Orthop Unfall. 2016;154:527–44.

    CAS  PubMed  Google Scholar 

  57. Garvin KL, Hanssen AD. Current concepts review: infection after total hip arthroplasty. J Bone Joint Surg Am. 1995;77-A:1576–88.

    Google Scholar 

  58. Cui Q, Mihalko WM, Shields JS, Ries M, Saleh HJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89-A:871–82.

    Google Scholar 

  59. Hanssen AD, Osmon DR. Evaluation of a staging system for infected hip arthroplasty. Clin Orthop Relat Res. 2002;(403):16–22.

    Google Scholar 

  60. Mont MA, Waldman BJ, Hungerford DS. Evaluation of preoperative cultures before second-stage reimplantation of a total knee prosthesis complicated by infection: a comparison-group study. J Bone Joint Surg Am. 2000;82:1552–7.

    CAS  PubMed  Google Scholar 

  61. Fink B. Revision of late periprosthetic infections of total hip endoprostheses: pros and cons of different concepts. Int J Med Sci. 2009;6:287–95.

    PubMed  PubMed Central  Google Scholar 

  62. Fink B. Treatment of infected total hip arthroplasty. Min Orthop Traumatol. 2010;61:123–33.

    Google Scholar 

  63. George DA, Logoluso N, Castellini G, Gianola S, Scarponi S, Haddad FS, Drago L, Romano CL. Does cemented or cementless single-stage exchange arthroplasty of chronic periprosthetic hip infections provide similar infection rates to a two-stage? A systematic review. BMC Infect Dis. 2016;16:553.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morrey BF, Kavanagh BF. Complications with revision of the femoral component of total hip arthroplasty: comparison between cemented and uncemented techniques. J Arthroplasty. 1992;7:71–9.

    CAS  PubMed  Google Scholar 

  65. Kavanagh BF. Femoral fractures associated with total hip arthroplasty. Orthop Clin North Am. 1992;23:249–57.

    CAS  PubMed  Google Scholar 

  66. Lewallen DG, Berry DJ. Periprosthetic fracture of the femur after total hip arthroplasty: treatment and results to date. Instr Course Lect. 1998;47:243–9.

    CAS  PubMed  Google Scholar 

  67. Pivec R, Issa K, Kapadia BH, Cheriari JJ, Maheshwari AV, Bonutti M, Mont MA. Incidence and future projections of periprosthetic femoral fracture following primary total hip arthroplasty: an analysis of international registry data. J Long Term Eff Med Implants. 2015;25:269–75.

    PubMed  Google Scholar 

  68. Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32644 primary total hip arthroplasties: a 40-year experience. Bone Joint J 2016;98-B:461–467.

    Google Scholar 

  69. Abdel MP, Houdek MT, Watss CD, Lewallen DG, Berry DJ. Epidemiology of periprosthetic femoral fracture in 5417 revision total hip arthroplasties: a 40-year experience. Bone Joint J. 2016;98-B:468–74.

    CAS  PubMed  Google Scholar 

  70. Bethea JS, DeAndrade JR, Fleming LL, Lindenbaum SD, Welch RB. Proximal femoral fractures following total hip arthroplasty. Clin Orthop. 1982;170:95–106.

    Google Scholar 

  71. Partridge AJ. Nylon straps for internal fixation of bone. Lancet. 1976;2:1252.

    CAS  PubMed  Google Scholar 

  72. Tower SS, Beals RK. Fractures of the femur after hip replacement. The Oregon experience. Orthop Clin North Am. 1999;30:235–47.

    CAS  PubMed  Google Scholar 

  73. Larsen E, Menck H, Rosenklint A. Fractures after hemialloplastic hip replacement. J Trauma. 1987;27:72–4.

    CAS  PubMed  Google Scholar 

  74. Namba RS, Rose NE, Amstutz HC. Unstable femoral fractures in hip arthroplasty. Orthop Trans. 1991;15:753.

    Google Scholar 

  75. Haddad FS, Duncan CP, Berry DJ, Lewallen DG, Gross AE, Chandler HP. Periprosthetic femoral fractures around well-fixed implants: use of cortical onlay allografts with or without a plate. J Bone Joint Surg. 2002;84-A:945–50.

    Google Scholar 

  76. Duncan DP, Masri BA. Fractures of the femur after hip replacement. Instr Course Lect. 1995;44:293–304.

    CAS  Google Scholar 

  77. Cooke PH, Newman JH. Fractures of the femur in relation to cemented hip prostheses. J Bone Joint Surg. 1988;70-B:386–9.

    Google Scholar 

  78. Adolphson P, Jonsson U, Kalen R. Fractures of the ipsilateral femur after total hip arthroplasty. Arch Orthop Trauma Surg. 1987;106:353–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fink .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fink, B. (2022). Reasons for Femoral Revision. In: Femoral Revision Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-84821-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84821-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84820-0

  • Online ISBN: 978-3-030-84821-7

  • eBook Packages: MedicineMedicine (R0)