Skip to main content

Impact of Acidification on Plankton

  • Chapter
  • First Online:
Estuarine Acidification
  • 197 Accesses

Abstract

Plankton are unique sensors to climate change induced alteration in temperature, salinity and pH of coastal and estuarine waters. They are considered as one of the best proxies to understand the effect of climate change due to their very short life cycle, quick response to alteration of water quality and less exploitation by humans, unlike fishes. Hence the pulse of acidification can be clearly evaluated through change in plankton composition and productivity. The present chapter highlights how the community structure of plankton along with their productivity changes as an effect of acidification in estuarine water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee K, Sengupta K, Raha A, Mitra A (2013) Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass Bioenerg 56:382–391

    Article  Google Scholar 

  • Chakraborty S, Zaman S, Pramanick P, Raha AK, Mukhopadhyay N, Chakravartty D, Mitra A (2013) Acidification of Sundarbans mangrove estuarine system. Discovery Nature 6(14):14–20. ISSN: 2319-5703

    Google Scholar 

  • Chaudhuri AB, Choudhury A (1994) In: Mangroves of the Sundarbans, vol I: India. IUCN- The World Conservation Union

    Google Scholar 

  • Chu Jennifer, MIT News Office (2015) Ocean acidification may cause dramatic changes to phytoplankton. Retrieved 07 Nov 2016, from http://news.mit.edu/2015/ocean-acidification-phytoplankton-0720

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J of Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Hildebrandt N, Niehoff B, Sartoris FJ (2014) Long-term effects of elevated CO2 and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus. Mar Pollu Bull 80(1±2):59±70. https://doi.org/10.1016/j.marpolbul.2014.01.050 PMID: 24529340

  • McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73(2):428±34. https://doi.org/10.1016/j.marpolbul.2013.02.010 PMID: 23490345

  • Mitra A (2000) The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In: Sheppard C (ed) Seas at the millennium – an environmental evaluation (Chap 62). Elsevier Science, London, pp 143–157

    Google Scholar 

  • Mitra A (2013) In: Sensitivity of mangrove ecosystem to changing climate by Dr. Abhijit Mitra. Springer, New Delhi, Heidelberg, New York, Dordrecht, London, edition (August 31, 2013); ISBN-10: 8132215087; ISBN-13: 978-8132215080, copyright Springer, India 2013; ISBN 978-81-322-1509-7 (eBook)

    Google Scholar 

  • Mitra A, Gangopadhyay A, Dube A, Andre CKS, Banerjee K (2009) Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Curr Sci 97(10):1445–1452

    CAS  Google Scholar 

  • Mitra A, Sengupta K, Banerjee K (2011) Standing biomass and carbon storage of above ground structures in dominant mangrove trees in the Sundarbans. Ecol Manage 261:1325–1335

    Article  Google Scholar 

  • Mitra A, Zaman S (2014) Carbon sequestration by coastal floral community. The Energy and Resources Institute (TERI) TERI Press, India, ISBN 978-81-7993-551-4

    Google Scholar 

  • Mitra A, Zaman S (2015) Blue carbon reservoir of the blue planet. Springer, Berlin. ISBN 978-81–322-2106-7

    Google Scholar 

  • Mitra A, Zaman S (2016) Basics of marine and estuarine ecology. Springer, Berlin, pp 1–481. ISBN 978-81-322-2705-2; https://doi.org/10.1007/978-81-322-2707-6

  • Mitra A, Zaman S (2020) Environmental science—a ground zero observation on the Indian Sub-continent. Springer Nature Switzerland AG, ISBN 978-3-030-49130-7, ISBN 978-3-030-49131-4 (eBook https://doi.org/10.1007/978-3-030-49131-4)

  • Redfield AC (1934). In: Danial RJ (ed) James Johnstone Memorial Volume. University of Liverpool Press, Liverpool, 176 p

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–207

    CAS  Google Scholar 

  • Sengupta K, Roy Chowdhury M, Bhattacharya SB, Raha A, Zaman S, Mitra A (2013) Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nat 3(8):19–24

    Google Scholar 

  • Shannon CE, Wiener W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, p 177

    Google Scholar 

  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Sci 327:676–679

    Article  CAS  Google Scholar 

  • Srinivasan A, Santhanam R (1998) Seasonal distribution and density of copepods in the sewage polluted coastal waters of Tuticorin, India. The biodiversity crisis and crustacea: Proceeding of the fourth international crustacean congress, Amsterdam, The Netherlands, pp 463–469

    Google Scholar 

  • Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519

    Article  CAS  Google Scholar 

  • Taucher J, Haunost M, Boxhammer T, Bach LT, AlgueroÂ-Muñiz M, Riebesell U (2017) Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE 12(2):e0169737. https://doi.org/10.1371/journal.pone.0169737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thor P, Oliva EO (2015) Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Mar Biol 162(4):799–807

    Article  CAS  Google Scholar 

  • Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Change Biol 21(6):2261–2271. https://doi.org/10.1111/gcb.12815 PMID: 25430823

    Article  Google Scholar 

  • Weydmann A, Soreide JE, Kwasniewski S, Widdicombe S (2012) Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Biol Ecol 428:39–42

    Article  CAS  Google Scholar 

Internet References

Download references

Author information

Authors and Affiliations

Authors

Annexure 5: Program to Evaluate Shannon-Weiner Species Diversity Index

Annexure 5: Program to Evaluate Shannon-Weiner Species Diversity Index

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A., Zaman, S. (2021). Impact of Acidification on Plankton. In: Estuarine Acidification . Springer, Cham. https://doi.org/10.1007/978-3-030-84792-0_5

Download citation

Publish with us

Policies and ethics