Skip to main content

Defect Analysis of Electroluminescence Images of PV CELL

  • 400 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 300)


In Current world, photovoltaic cells are thought of as a renewable and environment friendly resource of power on earth. It transforms direct light coming from the sun into electricity with no emission and also helpful in the conservation of the natural. But, solar cells suffer some problems which may be optical or mechanical defects which consist of micro crack, the scale of crack, and therefore which comes with the side effect from electrical or electromechanical interference during the image acquisition. All the above points cause degradation in energy generation, and additionally if this issue occurs at manufacturing end then it’ll have a big impact on the sector and makes it very hard to spot the panel within the later stage. This paper through image processing techniques presents a combination of varied advanced computer vision methods to de-noise EL images and supply the labelled data for future extraction and efficiently identify the micro cracks in Solar PV cells at any given stages.


  • PV cell crack detection
  • Deep learning
  • U-Net
  • Fully convolutional network
  • Image segmentation
  • Image classification

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84760-9_57
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84760-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Tang, W., Yang, Q., Xiong, K., Yan, W.: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images. ScienceDirect - Solar Energ. 201, 453–460 (2020)

    CrossRef  Google Scholar 

  2. Dhimish, M., Holmes, V.: Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging. J. Sci. Adv. Mater. Devices (2019)

    Google Scholar 

  3. Menéndez, O., Guamán, R., Pérez, M., Cheein, F.A.: Photovoltaic modules diagnosis using artificial vision techniques for artifact minimization. MDPI: EN, 11(07), 1688 (2018)

    Google Scholar 

  4. Merchán, P., García, I.: On the detection of solar panels by image processing techniques. Research gate, Santiago Salamanca, 318694161 (2017)

    Google Scholar 

  5. Buerhop-Lutz, C., et al.: A benchmark for visual identification of defective solar cells in electroluminescence imagery. Eur. PV Solar Energ. Conf. Exhib. (EU PVSEC) (2018).

  6. Deitsch, S., Buerhop-Lutz, C., Maier, A.K., Gallwitz, F., Riess, C.: Segmentation of Photovoltaic Module Cells in Electroluminescence Images. CoRR (2018). abs/1806.06530

    Google Scholar 

  7. Dhimish, M., Holmes, V., Dales, M., Mehrdadi, B.: Effect of micro cracks on photovoltaic output power: case study based on real time long term data measurements. Micro Nano Lett. 12, 803–807 (2017)

    CrossRef  Google Scholar 

  8. Desai, A., Injmulwar, P., Karadkhedkar, S.: Detection of micro-cracks in solar cell images. Int. J. Electr. Electron. Comput. Syst. V-4 I-2 (2016)

    Google Scholar 

  9. William, D.: Resonance Ultrasonic Vibrations (RUV) for crack detection in silicon wafers for solar cells. Graduate Theses and Dissertations (2006).

  10. Bartler, A., Mauch, L., Yang, B., Reuter, M., Stoicescu, L.: Automated detection of solar cell defects with deep learning. In: 2018 26th European Signal Processing Conference (EUSIPCO) 2035–2039 (2018).

  11. Spataru, S., Hacke, P., Sera, D.: Automatic detection of inactive solar cell cracks in electroluminescence images. In: 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pp. 1421–1426 (2017).

  12. Zhang, N., Shan, S., Wei, H., Zhang, K.: Micro-cracks detection of polycrystalline solar cells with transfer learning. J. Phys. Conf. Ser. 1651, 012118 (2020)

    CrossRef  Google Scholar 

  13. Lydia, M., Sindhu, K., Gugan, K.: Analysis on solar panel crack detection using optimization techniques. J. Nano-and Electron. Phys. 9, 02004–1 (2017).

  14. Dhimish, M., Mather, P.: Development of novel solar cell micro crack detection technique. IEEE Trans. Semicond. Manuf. 32(3), 277–285 (2019).

    CrossRef  Google Scholar 

  15. Teo, T.W., Abdullah, M.Z.: Solar cell micro-crack detection using localised texture analysis. J. Image Graph. 6(1), 54–58 (2018).

    CrossRef  Google Scholar 

  16. Crozier, J.L, Van Dyk, E.E., Vorster, F.J.: Identification and characterization of performance limiting defects and cell mismatch in photovoltaic modules. J. Energ. South. Afr. 26(3), pp.19–26 (2015). ISSN 2413–3051.

    Google Scholar 

  17. Energysage 2021. Monocrystalline and polycrystalline solar panels, digital image. Accessed 1 Apr 2021

  18. 2021. Deep learning Day 4, Object Detection. Accessed 25 Mar 2021

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dinesh Rathod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rathod, D., Goswami, A. (2022). Defect Analysis of Electroluminescence Images of PV CELL. In: Chen, J.IZ., Tavares, J.M.R.S., Iliyasu, A.M., Du, KL. (eds) Second International Conference on Image Processing and Capsule Networks. ICIPCN 2021. Lecture Notes in Networks and Systems, vol 300. Springer, Cham.

Download citation