Skip to main content

Machine Learning Approaches for Image Quality Improvement

  • Conference paper
  • First Online:
Second International Conference on Image Processing and Capsule Networks (ICIPCN 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 300))

Included in the following conference series:

  • 968 Accesses

Abstract

The most widely used tool for learning and interpreting medical diagnoses is magnetic resonance imaging. To analyze and learn the features, the image quality must be improved by preprocessing step. The most challenging task is to perform denoising without altering the contents of image. Performing denoising can dramatically speed up the diagnostic process by addressing the various ranges of noise in magnetic resonance images to enhance the quality of images. Many widespread studies have been carried out for noise control but lags into complication. To overcome these things, the paper provides various types of noise reduction approaches in-detail. The study also includes brief elaboration of magnetic resonance imaging. Machine learning that is foremost used field for complex problems is also discussed with pros and cons of existing techniques with performance parameters to measure the noise in MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maity, A., Pattanaik, A., Sagnika, S., Pani, S.: A comparative study on approaches to speckle noise reduction in images. In: 2015 International Conference on Computational Intelligence and Networks, pp. 148–155 (2015). https://doi.org/10.1109/CINE.2015.36

  2. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control 9(1), 56–69 (2014). https://doi.org/10.1016/j.bspc.2013.10.007

    Article  Google Scholar 

  3. Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014). https://doi.org/10.1016/j.neuroimage.2013.11.046

    Article  Google Scholar 

  4. Ai, D., Yang, J., Fan, J., Cong, W., Wang, X.: Denoising filters evaluation for magnetic resonance images. Optik 126(23), 3844–3850 (2015). https://doi.org/10.1016/j.ijleo.2015.07.155

    Article  Google Scholar 

  5. Kumar, M., Diwakar, M.: CT image denoising using locally adaptive shrinkage rule in tetrolet domain. J. King Saud Univ. – Comput. Inf. Sci. 30(1), 41–50 (2018). https://doi.org/10.1016/j.jksuci.2016.03.003

    Article  Google Scholar 

  6. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data (vol 34, pg 910, 1995). Magn. Reson. Med. 36(2), 332 (1996)

    Article  Google Scholar 

  7. McRobbie, D.W., Moore, E.A., Graves, M.J., Prince, M.R.: MRI From Picture to Proton. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Möllenhoff, K., Oros-Peusquens, A.-M., Shah, N.J.: Introduction to the Basics of Magnetic Resonance Imaging, pp. 75–98 (2012)

    Google Scholar 

  9. Shanmugam, A., Rukmani Devi, S.: a fuzzy model for noise estimation in magnetic resonance images. IRBM 41(5), 261–266 (2020). https://doi.org/10.1016/j.irbm.2019.11.005

    Article  Google Scholar 

  10. Chen, K., Lin, X., Hu, X., Wang, J., Zhong, H., Jiang, L.: An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images. BMC Med. Imaging 20(1), 1–9 (2020). https://doi.org/10.1186/s12880-019-0407-4

    Article  Google Scholar 

  11. Yuan, J.: MRI denoising via sparse tensors with reweighted regularization. Appl. Math. Model. 69, 552–562 (2019). https://doi.org/10.1016/j.apm.2019.01.011

    Article  MathSciNet  MATH  Google Scholar 

  12. Baselice, F., Ferraioli, G., Pascazio, V., Sorriso, A.: Denoising of MR images using Kolmogorov-Smirnov distance in a Non Local framework. Magn. Reson. Imaging 57, 176–193 (2019). https://doi.org/10.1016/j.mri.2018.11.022

    Article  Google Scholar 

  13. Bhujle, H.V., Vadavadagi, B.H.: NLM based magnetic resonance image denoising – a review. Biomed. Signal Process. Control 47, 252–261 (2019). https://doi.org/10.1016/j.bspc.2018.08.031

    Article  Google Scholar 

  14. Elhoseny, M., Shankar, K.: Optimal bilateral filter and convolutional Neural Network based denoising method of medical image measurements. Measure.: J. Int. Measure. Confed. 143, 125–135 (2019). https://doi.org/10.1016/j.measurement.2019.04.072

  15. Hanchate, V., Joshi, K.: MRI denoising using BM3D equipped with noise invalidation denoising technique and VST for improved contrast. SN Appl. Sci. 2(2), 1–8 (2020). https://doi.org/10.1007/s42452-020-1937-7

    Article  Google Scholar 

  16. Lv, H., Wang, R.: Denoising 3D magnetic resonance images based on low-rank tensor approximation with adaptive multirank estimation. IEEE Access 7, 85995–86003 (2019). https://doi.org/10.1109/ACCESS.2019.2924907

    Article  Google Scholar 

  17. Guo, Y.: Performance Comparison of MRI Denoising Techniques Based on Neutrosophic Set Approach, vol. 86, no. September 2014, pp. 307–318 (2012)

    Google Scholar 

  18. Kuppusamy, P.G., Jayaraman, S., Joseph, J.: A customized nonlocal restoration scheme with adaptive strength of smoothening for magnetic resonance images. Biomed. Signal Process. Control 49, 160–172 (2019). https://doi.org/10.1016/j.bspc.2018.12.012

    Article  Google Scholar 

  19. Rai, H.M., Chatterjee, K.: Hybrid adaptive algorithm based on wavelet transform and independent component analysis for denoising of MRI images. Measurement 144, 72–82 (2019). https://doi.org/10.1016/j.measurement.2019.05.028

    Article  Google Scholar 

  20. Wang, H., Zheng, R., Dai, F., Wang, Q., Wang, C.: High-field MR diffusion-weighted image denoising using a joint denoising convolutional neural network. J. Magn. Reson. Imaging 50(6), 1937–1947 (2019). https://doi.org/10.1002/jmri.26761

    Article  Google Scholar 

  21. Zhao, X., Zhang, T., Liu, H., Zhu, G., Zou, X.: Automatic windowing for MRI with convolutional neural network. IEEE Access 7, 68594–68606 (2019). https://doi.org/10.1109/ACCESS.2019.2918814

    Article  Google Scholar 

  22. Abdullah, S., Omar Arif, M., Arif, B., Mahmood, T.: MRI reconstruction from sparse K-space data using low dimensional manifold model. IEEE Access 7, 88072–88081 (2019). https://doi.org/10.1109/ACCESS.2019.2925051

    Article  Google Scholar 

  23. Li, W., Jia, L., Du, J.: Multi-modal sensor medical image fusion based on multiple salient features with guided image filter. IEEE Access 7, 173019–173033 (2019). https://doi.org/10.1109/ACCESS.2019.2953786

    Article  Google Scholar 

  24. Xie, D., et al.: Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn. Reson. Imaging 68, 95–105 (2020). https://doi.org/10.1016/j.mri.2020.01.005

  25. Lee, D., Lim, S.: Improved structural similarity metric for the visible quality measurement of images. J. Electron. Imaging 25(6), 063015 (2016). https://doi.org/10.1117/1.jei.25.6.063015

  26. You, X., Cao, N., Lu, H., Mao, M., Wang, W.: Denoising of MR images with Rician noise using a wider neural network and noise range division. Magn. Reson. Imaging 64(May), 154–159 (2019). https://doi.org/10.1016/j.mri.2019.05.042

    Article  Google Scholar 

  27. Tiruwa, S., Yadav, R.B.: Comparing various filtering techniques for reducing noise in MRI. In: 2018 International Conference on Sustainable Energy, Electronics and computing System, SEEMS 2018, pp. 1–5 (2019). https://doi.org/10.1109/SEEMS.2018.8687345

  28. Song, P., Member, S., Weizman, L., Mota, J.F.C.: Coupled Dictionary Learning for Multi-contrast MRI Reconstruction, no. c (2019)

    Google Scholar 

  29. Setyawan, R., Almahfud, M.A., Sari, C.A., Ignatius, D.R., Setiadi, M., Rachmawanto, E.H.: MRI image segmentation using morphological enhancement and noise removal based on fuzzy. In: 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 99–104 (2018)

    Google Scholar 

  30. Schaefferkoetter, J., et al.: Convolutional neural networks for improving image quality with noisy PET data. EJNMMI Res. 10(1), 1–11 (2020). https://doi.org/10.1186/s13550-020-00695-1

  31. Salman, T.M.: Image denoising using contourlet transform with variable block thresholding. In: 2018 10th Computer Science and Electronic Engineering (CEEC), no. c, pp. 282–286 (2015). https://doi.org/10.1109/CEEC.2018.8674209

  32. Eun, D., Jang, R., Ha, W.S., Lee, H., Jung, S.C., Kim, N.: Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches. Sci. Reports 10(1),(2020). https://doi.org/10.1038/s41598-020-69932-w

  33. Ran, M., et al.: Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med. Image Anal. 55, 165–180 (2019). https://doi.org/10.1016/j.media.2019.05.001

    Article  Google Scholar 

  34. Nasrin, S., Alom, M.Z., Burada, R., Taha, T.M., Asari, V.K.: Medical image denoising with recurrent residual U-Net (R2U-Net) base Auto-Encoder. In: Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, vol. 2019-July, pp. 345–350 (2019). https://doi.org/10.1109/NAECON46414.2019.9057834.

  35. Sharif, S.M.A., Naqvi, R.A., Biswas, M.: Learning medical image denoising with deep dynamic residual attention network. Mathematics 8(12), 1–19 (2020). https://doi.org/10.3390/math8122192

    Article  Google Scholar 

  36. Li, S., Zhou, J., Liang, D., Liu, Q.: MRI denoising using progressively distribution-based neural network. Magnetic Resonance Imaging 71, 55–68 (2020). https://doi.org/10.1016/j.mri.2020.04.006

    Article  Google Scholar 

  37. Kumar, R.R., Kumar, A., Srivastava, S.: Anisotropic diffusion based unsharp masking and crispening for denoising and enhancement of MRI images. In: 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET 2020, pp. 0–5 (2020). https://doi.org/10.1109/ICEFEET49149.2020.9186966

  38. Kala, R., Deepa, P.: Adaptive fuzzy hexagonal bilateral filter for brain MRI denoising. Multimedia Tools Appl. 79(21–22), 15513–15530 (2020). https://doi.org/10.1007/s11042-019-7459-x

    Article  Google Scholar 

  39. More, S., et al.: Security assured CNN-based model for reconstruction of medical images on the internet of healthcare things. IEEE Access 8, 126333–126346 (2020). https://doi.org/10.1109/ACCESS.2020.3006346

    Article  Google Scholar 

  40. Song, P., Weizman, L., Mota, J.F.C., Eldar, Y.C., Rodrigues, M.R.D.: Coupled dictionary learning for multi-contrast MRI reconstruction. In: Proceedings - International Conference on Image Processing, ICIP, no. 2, pp. 2880–2884 (2018). https://doi.org/10.1109/ICIP.2018.8451341

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

More, S., Singla, J. (2022). Machine Learning Approaches for Image Quality Improvement. In: Chen, J.IZ., Tavares, J.M.R.S., Iliyasu, A.M., Du, KL. (eds) Second International Conference on Image Processing and Capsule Networks. ICIPCN 2021. Lecture Notes in Networks and Systems, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-84760-9_5

Download citation

Publish with us

Policies and ethics