Skip to main content

Pluripotent Stem Cells: Embryonic/Fetal Stem Cells and Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Orthobiologics

Abstract

Musculoskeletal regenerative medicine encompasses strategies for the regeneration of bone, cartilage, tendon, ligament, muscle, fat, and other connective tissues. Perhaps the greatest unmet need is cartilage preservation, repair, and regeneration. Most of the reported approaches in regenerative medicine for chondral defects and osteoarthritis (OA) have been based on adult stem cells, but pluripotent stem cells also merit a consideration as potential cell sources with their advantage in plasticity and unlimited expansion potential. While embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are similar to each other in almost all cellular characteristics, iPSCs are preferred to ESCs because iPSCs do not have religious and ethical issues and autogenous iPSCs are free from the risk of immune rejection unlike ESCs. While iPSCs were first induced using either retrovirus or lentivirus, non-integrating vectors are currently preferred for the generation of iPSCs. Several methods to differentiate ESCs/iPSCs toward chondrocytes have been developed. iPSCs may become a useful cell source for regenerative therapies for chondral defects and OA, provided that safe and reliable ways of producing iPSC-derived chondrocytes are established. One of the unique characteristics seen from in vitro chondrogenic differentiation of iPSCs is the low expression of hypertrophic markers. This may indicate that iPSC-derived chondrocytes have a more stable phenotype, unlike mesenchymal stromal cells (MSCs). Also, in vivo studies on iPSC treatment to joints of small animals demonstrated enhanced survival and engraftment of implanted cells after several months. This may increase the chance of articular cartilage regeneration and durable matrix synthesis, rather than primarily paracrine effects on endogenous cells. Further investigations in larger animal models are necessary for a more accurate assessment of the efficacy and safety of in vivo implantation of iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  3. Nichols J, Smith A. The origin and identity of embryonic stem cells. Development. 2007;138:3–8.

    Article  CAS  Google Scholar 

  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  6. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  7. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang C, Jiang S-W. Induced pluripotent stem cells (iPSCs): safe and efficient induction strategies. Chin J Biochem Mol Biol. 2012;28:1005–10.

    CAS  Google Scholar 

  9. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12.

    Article  CAS  PubMed  Google Scholar 

  10. Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep. 2013;1:283–92.

    Article  CAS  Google Scholar 

  11. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lee J, Kim Y, Yi H, Diecke S, Kim J, Jung H, et al. Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2014;16:R41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.

    Article  CAS  PubMed  Google Scholar 

  14. Borestrom C, Simonsson S, Enochson L, Bigdeli N, Brantsing C, Ellerstrom C, et al. Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med. 2014;3:433–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li Y, Liu T, Van Halm-Lutterodt N, Chen J, Su Q, Hai Y. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther. 2016;7:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tapia N, Schöler HR. Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell. 2016;19:298–309.

    Article  CAS  PubMed  Google Scholar 

  17. Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop. 2015;39:995–1003.

    Article  PubMed  Google Scholar 

  18. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108:14234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okita K, Nakagawa M, Hong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.

    Article  CAS  PubMed  Google Scholar 

  22. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324:797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Long Y, Wang M, Gu H, Xie X. Bromodeoxyuridine promotes full chemical induction of mouse pluripotent stem cells. Cell Res. 2015;25:1171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651–4.

    Article  CAS  PubMed  Google Scholar 

  29. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma H, Morey R, O’Neil RC, He Y, Daughtry B, Schultz MD, et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell. 2010;7:249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rim YA, Nam Y, Park N, Jung H, Jang Y, Lee J, et al. Different Chondrogenic potential among human induced pluripotent stem cells from diverse origin primary cells. Stem Cells Int. 2018;2018:9432616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nasu A, Ikeya M, Yamamoto T, Watanabe A, Jin Y, Matsumoto Y, Hayakawa K, Amano N, Sato S, Osafune K, Aoyama T, Nakamura T, Kato T, Toguchida J. Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin. PLoS One. 2013;8(1):e53771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S, et al. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater. 2012;23:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: emerging new roles in calcium signalling. Cell Sign. 2014;26:979–1000.

    Article  CAS  Google Scholar 

  36. Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54.

    Article  CAS  PubMed  Google Scholar 

  37. Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells. 2009;27:1812–21.

    Article  PubMed  Google Scholar 

  38. Hwang NS, Varghese S, Elisseeff J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One. 2008;3:e2498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kawaguchi J, Mee PJ, Smith AG. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone. 2005;36:758–69.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Z, Sui L, Toh WS, Lee EH, Cao T. Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 2009;18:929–40.

    Article  CAS  PubMed  Google Scholar 

  41. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, et al. Derivation of clinically compliant MSCs from CD105þ, CD24- differentiated human ESCs. Stem Cells. 2007;25:425–36.

    Article  CAS  PubMed  Google Scholar 

  42. Drissi H, Gibson JD, Guzzo RM, Xu RH. Derivation and chondrogenic commitment of human embryonic stem cell-derived mesenchymal progenitors. Methods Mol Biol. 2015;1330:65–78.

    Article  CAS  Google Scholar 

  43. Tanaka H, Murphy CL, Murphy C, Kimur M, Kawai S, Polak JM. Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. J Cell Biochem. 2004;93:454–62.

    Article  CAS  PubMed  Google Scholar 

  44. Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotech. 2010;28:1187–94.

    Article  CAS  Google Scholar 

  45. Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop. 2016;7:149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qu C, Puttonen KA, Lindeberg H, Ruponen M, Hovatta O, Koistinaho J, et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol. 2013;45:1802–12.

    Article  CAS  PubMed  Google Scholar 

  47. Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, Fuentes-Boquete IM, de Toro-Santos FJ, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater. 2018;36:96–109.

    Article  PubMed  Google Scholar 

  48. Suchorska WM, Augustyniak E, Richter M, Trzeciak T. Comparison of four protocols to generate chondrocyte-like cells from human induced pluripotent stem cells (hiPSCs). Stem Cell Rev. 2017;13:299–308.

    Article  CAS  Google Scholar 

  49. Cheng A, Kapacee Z, Peng J, Lu S, Lucas RJ, Hardingham TE, et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med. 2014;3:1287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Craft AM, Rockel JS, Nartiss Y, Kandel RA, Alman BA, Keller GM. Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33:638–45.

    Article  CAS  PubMed  Google Scholar 

  51. Umeda K, Zhao J, Simmons P, Stanley E, Elefanty A, Nakayama N. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep. 2012;2:455–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee J, Taylor SE, Smeriglio P, Lai J, Maloney WJ, Yang F, et al. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J. 2015;29:3399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medvedev SP, Grigor’eva EV, Shevchenko AI, Malakhova AA, Dementyeva EV, Shilov AA, et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev. 2011;20:1099–112.

    Article  CAS  PubMed  Google Scholar 

  54. Zou L, Luo Y, Chen M, Wang G, Ding M, Petersen CC, et al. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep. 2013;3:2243.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nejadnik H, Diecke S, Lenkov OD, Chapelin F, Donig J, Tong X, et al. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev. 2015;11:242–53.

    Article  CAS  PubMed Central  Google Scholar 

  56. Chijimatsu R, Ikeya M, Yasui Y, Ikeda Y, Ebina K, Moriguchi Y, et al. Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int. 2017;2017:1960965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One. 2012;7:e33225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saito T, Yano F, Mori D, Kawata M, Hoshi K, Takato T, et al. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed Res. 2015;36:179–86.

    Article  PubMed  Google Scholar 

  59. Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4:404–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lach M, Trzeciak T, Richter M, Pawlicz J, Suchorska W. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J Tissue Eng. 2014;30:5:2041731414552701.

    Google Scholar 

  61. Diederichs S, Klampfleuthner FAM, Moradi B, Richter W. Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway. Front Cell Dev Biol. 2019;7:270.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rim YA, Nam Y, Park N, Lee J, Park SH, Ju JH. Repair potential of nonsurgically delivered induced pluripotent stem cell-derived chondrocytes in a rat osteochondral defect model. J Tissue Eng Regen Med. 2018;12(8):1843–55.

    Article  CAS  PubMed  Google Scholar 

  63. Ko JY, Kim KI, Park S, Im GI. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials. 2014;35:3571–81.

    Article  CAS  PubMed  Google Scholar 

  64. Diekman BO, Christoforou N, Willard VP, Sun HS, Sanchez-Adams J, Leong KW, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:19172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adkisson HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR. Immune evasion by neocartilage-derived chondrocytes: implications for biologic repair of joint articular cartilage. Stem Cell Res. 2010;4(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  66. AdkssonHD MJA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Seyedin M, Amendola A, Streeter PR, Buckwalter JA. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010;38(7):1324–33.

    Article  Google Scholar 

  67. Lee J, Smeriglio P, Chu CR, Bhutani N. Human iPSC-derived chondrocytes mimic juvenile chondrocyte function for the dual advantage of increased proliferation and resistance to IL-1beta. Stem Cell Res Ther. 2017;8(1):244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhu Y, Wu X, Liang Y, Gu H, Song K, Zou X, Zhou G. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol. 2016;16(1):78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kotaka S, Wakitani S, Shimamoto A, Kamei N, Sawa M, Adachi N, Ochi M. Magnetic targeted delivery of induced pluripotent stem cells promotes articular cartilage repair stem. Cells Int. 2017;2017:9514719.

    Google Scholar 

  70. Xu X, Shi D, Liu Y, Yao Y, Dai J, Xu Z, et al. In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model. Exp Ther Med. 2017;14:239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu H, Yang L, Yu FF, Wang S, Wu C, Cu C, Lammi MJ, Guo X. The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthr Cartil. 2017;25(5):616–24.

    Article  CAS  Google Scholar 

  72. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

    Article  CAS  PubMed  Google Scholar 

  73. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13:382–4.

    Article  CAS  PubMed  Google Scholar 

  74. Chesterman PJ, Smith AU. Homotransplantation of articular cartilage and isolated chondrocytes. An experimental study in rabbits. J Bone Joint Surg Br. 1968;50:184–97.

    Article  CAS  PubMed  Google Scholar 

  75. Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42(6):1417–25.

    Article  PubMed  Google Scholar 

  76. Yamashita A, Tamamura Y, Morioka M, Karagiannis P, Shima N, Nsumaki N. Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm Regen. 2018;38:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000.

    Article  CAS  PubMed  Google Scholar 

  78. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsmaki N. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One. 2013;8:e77365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Im, GI. (2022). Pluripotent Stem Cells: Embryonic/Fetal Stem Cells and Induced Pluripotent Stem Cells. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics