Skip to main content

Injectable Orthobiologics for the Treatment of Subchondral Insufficiency Fractures of the Knee (SIFK) and Related Pathogenic Processes

  • Chapter
  • First Online:
Orthobiologics

Abstract

Spontaneous osteonecrosis of the knee (SONK) presents a challenging treatment scenario as the etiology of these lesions has been poorly defined, and therefore appropriate treatment remains uncertain. More recently, it has been proposed that these lesions are better characterized as the culmination of subchondral insufficiency fractures of the knee (SIFK). As a result, treatment options better aimed at reversing or halting this pathophysiologic process have been considered. The use of injectable orthobiologics, such as platelet-rich plasma (PRP), bone marrow aspirate concentrate (BMAC), and calcium phosphate, has become of interest for treating such lesions. However, the efficacy of these treatment modalities remains poorly understood. The purpose of the current chapter is to provide a comprehensive and evidence-based review of the pathophysiology of and risk factors for SIFK. Additionally, this chapter discusses the most recent evidence surrounding the use of orthobiologics to treat SIFK and future directions for research pertaining to this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1(7749):519–22.

    Article  CAS  PubMed  Google Scholar 

  2. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.

    Article  Google Scholar 

  3. Hussain ZB, Chahla J, Mandelbaum BR, Gomoll AH, LaPrade RF. The role of meniscal tears in spontaneous osteonecrosis of the knee: a systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med. 2019;47(2):501–7.

    Article  PubMed  Google Scholar 

  4. Pappas GP, Vogelsong MA, Staroswiecki E, Gold GE, Safran MR. Magnetic resonance imaging of asymptomatic knees in collegiate basketball players: the effect of one season of play. Clin J Sport Med. 2016;26(6):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matiotti SB, Soder RB, Becker RG, Santos FS, Baldisserotto M. MRI of the knees in asymptomatic adolescent soccer players: a case-control study. J Magn Reson Imaging. 2017;45(1):59–65.

    Article  PubMed  Google Scholar 

  6. Karim AR, Cherian JJ, Jauregui JJ, Pierce T, Mont MA. Osteonecrosis of the knee: review. Ann Transl Med. 2015;3(1):6.

    PubMed  PubMed Central  Google Scholar 

  7. Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82(6):858–66.

    Article  CAS  PubMed  Google Scholar 

  8. Mears SC, McCarthy EF, Jones LC, Hungerford DS, Mont MA. Characterization and pathological characteristics of spontaneous osteonecrosis of the knee. Iowa Orthop J. 2009;29:38–42.

    PubMed  PubMed Central  Google Scholar 

  9. Tanaka Y, Mima H, Yonetani Y, Shiozaki Y, Nakamura N, Horibe S. Histological evaluation of spontaneous osteonecrosis of the medial femoral condyle and short-term clinical results of osteochondral autografting: a case series. Knee. 2009;16(2):130–5.

    Article  PubMed  Google Scholar 

  10. Higuchi H, Kobayashi Y, Kobayashi A, Hatayama K, Kimura M. Histologic analysis of postmeniscectomy osteonecrosis. Am J Orthop (Belle Mead, NJ). 2013;42(5):220–2.

    Google Scholar 

  11. Delgado D, Garate A, Vincent H, Bilbao AM, Patel R, Fiz N, et al. Current concepts in intraosseous platelet-rich plasma injections for knee osteoarthritis. J Clin Orthop Trauma. 2019;10(1):36–41.

    Article  PubMed  Google Scholar 

  12. Weinstein RS. Glucocorticoid-induced osteonecrosis. Endocrine. 2012;41(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez M, Anitua E, Delgado D, Sanchez P, Prado R, Goiriena JJ, et al. A new strategy to tackle severe knee osteoarthritis: combination of intra-articular and intraosseous injections of platelet rich plasma. Expert Opin Biol Ther. 2016;16(5):627–43.

    Article  CAS  PubMed  Google Scholar 

  14. Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg. 1983;65(5):588–97.

    Article  CAS  Google Scholar 

  15. Ahlback S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11(6):705–33.

    Article  CAS  PubMed  Google Scholar 

  16. Akamatsu Y, Kobayashi H, Kusayama Y, Aratake M, Kumagai K, Saito T. Predictive factors for the progression of spontaneous osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):477–84.

    Article  CAS  PubMed  Google Scholar 

  17. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139(5 Pt 1):330–6.

    Article  PubMed  Google Scholar 

  18. Houpt JB, Pritzker KP, Alpert B, Greyson ND, Gross AE. Natural history of spontaneous osteonecrosis of the knee (SONK): a review. Semin Arthritis Rheum. 1983;13(2):212–27.

    Article  CAS  PubMed  Google Scholar 

  19. Zywiel MG, McGrath MS, Seyler TM, Marker DR, Bonutti PM, Mont MA. Osteonecrosis of the knee: a review of three disorders. Orthop Clin North Am. 2009;40(2):193–211.

    Article  PubMed  Google Scholar 

  20. Akamatsu Y, Mitsugi N, Hayashi T, Kobayashi H, Saito T. Low bone mineral density is associated with the onset of spontaneous osteonecrosis of the knee. Acta Orthop. 2012;83(3):249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zanetti M, Romero J, Dambacher MA, Hodler J. Osteonecrosis diagnosed on MR images of the knee. Relationship to reduced bone mineral density determined by high resolution peripheral quantitative CT. Acta Radiol. 2003;44(5):525–31.

    CAS  PubMed  Google Scholar 

  22. Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD. Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg. 2009;91(2):190–5.

    Article  CAS  Google Scholar 

  23. Sung JH, Ha JK, Lee DW, Seo WY, Kim JG. Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: comparison with horizontal tear. Arthroscopy. 2013;29(4):726–32.

    Article  PubMed  Google Scholar 

  24. Nelson FR, Craig J, Francois H, Azuh O, Oyetakin-White P, King B. Subchondral insufficiency fractures and spontaneous osteonecrosis of the knee may not be related to osteoporosis. Arch Osteoporos. 2014;9:194.

    Article  PubMed  Google Scholar 

  25. Yamagami R, Taketomi S, Inui H, Tahara K, Tanaka S. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee. Knee. 2017;24(2):390–5.

    Article  PubMed  Google Scholar 

  26. Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skelet Radiol. 2004;33(5):260–4.

    Article  Google Scholar 

  27. Chambers C, Craig JG, Zvirbulis R, Nelson F. Spontaneous osteonecrosis of knee after arthroscopy is not necessarily related to the procedure. American journal of orthopedics (Belle Mead, NJ). 2015;44(6):E184–9.

    Google Scholar 

  28. Norman A, Baker ND. Spontaneous osteonecrosis of the knee and medial meniscal tears. Radiology. 1978;129(3):653–6.

    Article  CAS  PubMed  Google Scholar 

  29. Plett SK, Hackney LA, Heilmeier U, Nardo L, Yu A, Zhang CA, et al. Femoral condyle insufficiency fractures: associated clinical and morphological findings and impact on outcome. Skelet Radiol. 2015;44(12):1785–94.

    Article  Google Scholar 

  30. Ramnath RR, Kattapuram SV. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skelet Radiol. 2004;33(10):575–81.

    Article  Google Scholar 

  31. Valenti Nin JR, Leyes M, Schweitzer D. Spontaneous osteonecrosis of the knee. Treatment and evolution. Knee Surg Sports Traumatol Arthrosc. 1998;6(1):12–5.

    Article  CAS  PubMed  Google Scholar 

  32. Yasuda T, Ota S, Fujita S, Onishi E, Iwaki K, Yamamoto H. Association between medial meniscus extrusion and spontaneous osteonecrosis of the knee. Int J Rheum Dis. 2017;

    Google Scholar 

  33. Bhatia S, LaPrade CM, Ellman MB, LaPrade RF. Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med. 2014;42(12):3016–30.

    Article  PubMed  Google Scholar 

  34. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007;89(9):2000–10.

    Article  PubMed  Google Scholar 

  35. Kan A, Oshida M, Oshida S, Imada M, Nakagawa T, Okinaga S. Anatomical significance of a posterior horn of medial meniscus: the relationship between its radial tear and cartilage degradation of joint surface. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:1.

    PubMed  PubMed Central  Google Scholar 

  36. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am. 2008;90(9):1922–31.

    Article  PubMed  Google Scholar 

  37. Muscolo DL, Costa-Paz M, Makino A, Ayerza MA. Osteonecrosis of the knee following arthroscopic meniscectomy in patients over 50-years old. Arthroscopy. 1996;12(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  38. Prues-Latour V, Bonvin JC, Fritschy D. Nine cases of osteonecrosis in elderly patients following arthroscopic meniscectomy. Knee Surg Sports Traumatol Arthrosc. 1998;6(3):142–7.

    Article  CAS  PubMed  Google Scholar 

  39. Brahme SK, Fox JM, Ferkel RD, Friedman MJ, Flannigan BD, Resnick DL. Osteonecrosis of the knee after arthroscopic surgery: diagnosis with MR imaging. Radiology. 1991;178(3):851–3.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson TC, Evans JA, Gilley JA, DeLee JC. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy. 2000;16(3):254–61.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi Y, Kimura M, Higuchi H, Terauchi M, Shirakura K, Takagishi K. Juxta-articular bone marrow signal changes on magnetic resonance imaging following arthroscopic meniscectomy. Arthroscopy. 2002;18(3):238–45.

    Article  PubMed  Google Scholar 

  42. Schmid RB, Wirz D, Gopfert B, Arnold MP, Friederich NF, Hirschmann MT. Intra-operative femoral condylar stress during arthroscopy: an in vivo biomechanical assessment. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):747–52.

    Article  PubMed  Google Scholar 

  43. Turker M, Cetik O, Cirpar M, Durusoy S, Comert B. Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):246–50.

    Article  PubMed  Google Scholar 

  44. Song Y, Greve JM, Carter DR, Koo S, Giori NJ. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy. Osteoarthr Cartil. 2006;14(8):728–37.

    Article  CAS  Google Scholar 

  45. Bonutti PM, Seyler TM, Delanois RE, McMahon M, McCarthy JC, Mont MA. Osteonecrosis of the knee after laser or radiofrequency-assisted arthroscopy: treatment with minimally invasive knee arthroplasty. J Bone Joint Surg Am. 2006;88(Suppl 3):69–75.

    PubMed  Google Scholar 

  46. Lansdown DA, Shaw J, Allen CR, Ma CB. Osteonecrosis of the knee after anterior cruciate ligament reconstruction: a report of 5 cases. Orthop J Sports Med. 2015;3(3):2325967115576120.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pilge H, Bittersohl B, Schneppendahl J, Hesper T, Zilkens C, Ruppert M, et al. Bone marrow aspirate concentrate in combination with intravenous Iloprost increases bone healing in patients with avascular necrosis of the femoral head: a matched pair analysis. Orthop Rev (Pavia). 2016;8(4):6902.

    Google Scholar 

  48. Ghasemi SA, Zhang D, Fragomen A, Rozbruch SR. Subtalar distraction arthroplasty with bone marrow aspirate concentrate (BMAC), preliminary results of a new joint preservation technique. Foot Ankle Surg. 2020;

    Google Scholar 

  49. Murphy EP, McGoldrick NP, Curtin M, Kearns SR. A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg. 2019;25(4):441–8.

    Article  PubMed  Google Scholar 

  50. Houdek MT, Wyles CC, Collins MS, Howe BM, Terzic A, Behfar A, et al. Stem cells combined with platelet-rich plasma effectively treat corticosteroid-induced osteonecrosis of the hip: a prospective study. Clin Orthop Relat Res. 2018;476(2):388–97.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yuan W, He X, Zhang J, Chen Y, Gong T, Zhu Y. Calcium phosphate silicate and calcium silicate cements suppressing osteoclasts activity through cytokine regulation. J Nanosci Nanotechnol. 2018;18(10):6799–804.

    Article  CAS  PubMed  Google Scholar 

  52. Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J Mater Sci Mater Med. 2019;30(2):15.

    Article  PubMed  Google Scholar 

  53. Schlickewei CW, Laaff G, Andresen A, Klatte TO, Rueger JM, Ruesing J, et al. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite--an animal model. J Orthop Surg Res. 2015;10:116.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bajammal SS, Zlowodzki M, Lelwica A, Tornetta P 3rd, Einhorn TA, Buckley R, et al. The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am. 2008;90(6):1186–96.

    Article  PubMed  Google Scholar 

  55. Liu JN, Shields TG, Gowd AK, Amin NH. Surgical treatment of insufficiency fractures of the knee. Arthrosc Tech. 2019;8(11):e1327–e32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bonadio MB, Giglio PN, Helito CP, Pecora JR, Camanho GL, Demange MK. Subchondroplasty for treating bone marrow lesions in the knee—initial experience. Rev Bras Ortop. 2017;52(3):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cohen SB, Sharkey PF. Subchondroplasty for treating bone marrow lesions. J Knee Surg. 2016;29(7):555–63.

    PubMed  Google Scholar 

  58. Chua K, Kang JYB, Ng FDJ, Pang HN, DTT L, Silva A, et al. Subchondroplasty for bone marrow lesions in the arthritic knee results in pain relief and improvement in function. J Knee Surg. 2019;

    Google Scholar 

  59. Astur DC, de Freitas EV, Cabral PB, Morais CC, Pavei BS, Kaleka CC, et al. Evaluation and management of subchondral calcium phosphate injection technique to treat bone marrow lesion. Cartilage. 2019;10(4):395–401.

    Article  CAS  PubMed  Google Scholar 

  60. Byrd JM, Akhavan S, Frank DA. Mid-term outcomes of the subchondroplasty procedure for patients with osteoarthritis and bone marrow edema. Orthopaedic Journal of Sports Medicine. 2017;5(7_suppl6)

    Google Scholar 

  61. Astur DC, de Freitas EV, Cabral PB, Morais CC, Pavei BS, Kaleka CC, et al. Evaluation and management of subchondral calcium phosphate injection technique to treat bone marrow lesion. Cartilage. 2018:1947603518770249.

    Google Scholar 

  62. Hernigou P, Gerber D, Auregan JC. Knee osteonecrosis: cell therapy with computer-assisted navigation. Surg Technol Int. 2020;36

    Google Scholar 

  63. Hernigou P, Auregan JC, Dubory A, Flouzat-Lachaniette CH, Chevallier N, Rouard H. Subchondral stem cell therapy versus contralateral total knee arthroplasty for osteoarthritis following secondary osteonecrosis of the knee. Int Orthop. 2018;42(11):2563–71.

    Article  PubMed  Google Scholar 

  64. Kasik CS, Martinkovich S, Mosier B, Akhavan S. Short-term outcomes for the biologic treatment of bone marrow edema of the knee using bone marrow aspirate concentrate and injectable demineralized bone matrix. Arthrosc Sports Med Rehabil. 2019;

    Google Scholar 

  65. Sanchez M, Delgado D, Sanchez P, Muinos-Lopez E, Paiva B, Granero-Molto F, et al. Combination of intra-articular and intraosseous injections of platelet rich plasma for severe knee osteoarthritis: a pilot study. Biomed Res Int. 2016;2016:4868613.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sanchez M, Delgado D, Pompei O, Perez JC, Sanchez P, Garate A, et al. Treating severe knee osteoarthritis with combination of intra-osseous and intra-articular infiltrations of platelet-rich plasma: an observational study. Cartilage. 2019;10(2):245–53.

    Article  PubMed  Google Scholar 

  67. Su K, Bai Y, Wang J, Zhang H, Liu H, Ma S. Comparison of hyaluronic acid and PRP intra-articular injection with combined intra-articular and intraosseous PRP injections to treat patients with knee osteoarthritis. Clin Rheumatol. 2018;37(5):1341–50.

    Article  PubMed  Google Scholar 

  68. Lychagin A, Lipina M, Garkavi A, Islaieh O, Timashev P, Ashmore K, et al. Intraosseous injections of platelet rich plasma for knee bone marrow lesions treatment: one year follow-up. Int Orthop. 2020;

    Google Scholar 

  69. Jager M, Tillmann FP, Thornhill TS, Mahmoudi M, Blondin D, Hetzel GR, et al. Rationale for prostaglandin I2 in bone marrow oedema—from theory to application. Arthritis Res Ther. 2008;10(5):R120.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Meizer R, Radda C, Stolz G, Kotsaris S, Petje G, Krasny C, et al. MRI-controlled analysis of 104 patients with painful bone marrow edema in different joint localizations treated with the prostacyclin analogue iloprost. Wien Klin Wochenschr. 2005;117(7–8):278–86.

    Article  PubMed  Google Scholar 

  71. Kobak S. Osteonecrosis and monoarticular rheumatoid arthritis treated with intra-articular adalimumab. Mod Rheumatol. 2008;18(3):290–2.

    Article  CAS  PubMed  Google Scholar 

  72. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kunze, K.N., Hussain, Z.B., Sánchez, M., Chahla, J. (2022). Injectable Orthobiologics for the Treatment of Subchondral Insufficiency Fractures of the Knee (SIFK) and Related Pathogenic Processes. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics